102
Views
7
CrossRef citations to date
0
Altmetric
Articles

Feasibility of improving carbohydrate content of Chlorella S4, a native isolate from the Persian Gulf using sequential statistical designs

, , &
Pages 291-299 | Received 31 May 2019, Accepted 08 Oct 2019, Published online: 08 Nov 2019

References

  • Rawat I, Kumar RR, Mutanda T, et al. Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy. 2013; 103:444–467.
  • Yang F, Long L, Sun X, et al. Optimization of medium using response surface methodology for lipid production by Scenedesmus sp. Mar Drugs. 2014;12(3):1245–1257.
  • Kaygusuz K. Bioenergy as a clean and sustainable fuel. Energy Sources Part A. 2009;31(12):1069–1080.
  • Khan MI, Lee MG, Shin JH, et al. Pretreatment optimization of the biomass of Microcystis aeruginosa for efficient bioethanol production. AMB Exp. 2017;7(1):19.
  • Chen C-Y, Yeh K-L, Aisyah R, et al. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol. 2011;102(1):71–81.
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev. 2010;14(1):217–232.
  • Blair MF, Kokabian B, Gude VG. Light and growth medium effect on Chlorella vulgaris biomass production. J Environ Chem Eng. 2014;2(1):665–674.
  • Ho S-H, Huang S-W, Chen C-Y, et al. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol. 2013;135:191–198.
  • Kim KH, Choi IS, Kim HM, et al. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Bioresour Technol. 2014;153:47–54.
  • Chaichalerm S, Pokethitiyook P, Yuan W, et al. Culture of microalgal strains isolated from natural habitats in Thailand in various enriched media. Appl Energy 2012;89(1):296–302.
  • Juneja A, Ceballos RM, Murthy GS. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 2013;6(9):4607–4638.
  • Dragone G, Fernandes BD, Abreu AP, et al. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 2011;88(10):3331–3335.
  • Harun R, Danquah MK. Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem. 2011;46(1):304–309.
  • Jeirani Z, Jan BM, Ali BS, et al. Prediction of water and oil percolation thresholds of a microemulsion by modeling of dynamic viscosity using response surface methodology. J Ind Eng Chem. 2013;19(2):554–560.
  • Al-Shorgani NKN, Shukor H, Abdeshahian P, et al. Enhanced butanol production by optimization of medium parameters using Clostridium acetobutylicum YM1. Saudi J Biol Sci. 2018;25(7):1308–1321.
  • Najafi G, Ghobadian B, Yusaf TF. Algae as a sustainable energy source for biofuel production in Iran: a case study. Renew Sust Energ Rev. 2011;15(8):3870–3876.
  • Moazami N, Ranjbar R, Ashori A, et al. Biomass and lipid productivities of marine microalgae isolated from the Persian Gulf and the Qeshm Island. Biomass Bioenergy. 2011;35(5):1935–1939.
  • Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol. 1961;3(2):208–IN1.
  • Liu D, Coloe S, Baird R, et al. Rapid mini-preparation of fungal DNA for PCR. J Clin Microbiol. 2000;38(1):471–471.
  • Rudic V, Dudnicenco T, inventors; Process for cultivation of green alga Haematococcus pluvialis (Flotow). MD Patent Nr. a, 154, 2000.
  • Moaddab AR, Khabazi M, Roosta H. Determining the rate of salinity of Persian Gulf waters with the aid of satellite images and least squares method. Open J Mar Sci. 2017;07(01):155.
  • Golzary A, Imanian S, Abdoli MA, et al. A cost-effective strategy for marine microalgae separation by electro-coagulation–flotation process aimed at bio-crude oil production: optimization and evaluation study. Sep Purif Technol. 2015;147:156–165.
  • Ghosh S, Roy S, Das D. Improvement of biomass production by Chlorella sp. MJ 11/11 for use as a feedstock for biodiesel. Appl Biochem Biotechnol. 2015;175(7):3322–3335.
  • Miranda CT, de Lima DV, Atella GC, et al. Optimization of nitrogen, phosphorus and salt for lipid accumulation of microalgae: Towards the viability of microalgae biodiesel. Nat Sci. 2016;8:557.
  • Amaro HM, Guedes AC, Malcata FX. Advances and perspectives in using microalgae to produce biodiesel. Appl Energy. 2011;88(10):3402–3410.
  • Hodge J, Hofreiter B. Determination of reducing sugars and carbohydrates. In: Whistler RL, Wolfrom ML, editors. Methods in carbohydrate chemistry. Vol 1. New York (NY): Academic Press; 1962; 380–394.
  • Castro YA, Ellis JT, Miller CD, et al. Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. Appl Energy. 2015;140:14–19.
  • Priyadharshini SD, Bakthavatsalam A. Optimization of phenol degradation by the microalga Chlorella pyrenoidosa using Plackett–Burman design and response surface methodology. Bioresour Technol. 2016;207:150–156.
  • Rastbood A, Gholipour Y, Majdi A. Finite element based response surface methodology to optimize segmental tunnel lining. Eng Technol Appl Sci Res. 2017;7:1504–1514.
  • Jeirani Z, Jan BM, Ali BS, et al. Prediction of the optimum aqueous phase composition of a triglyceride microemulsion using response surface methodology. J Ind Eng Chem. 2013;19(4):1304–1309.
  • Templeton DW, Quinn M, Van Wychen S, et al. Separation and quantification of microalgal carbohydrates. J Chromatogr A. 2012; 1270:225–234.
  • Song H, He M, Gu C, et al. Extraction optimization, purification, antioxidant activity, and preliminary structural characterization of crude polysaccharide from an Arctic Chlorella sp. Polymers 2018; 10:292.
  • Sheng J, Yu F, Xin Z, et al. Preparation, identification and their antitumor activities in vitro of polysaccharides from Chlorella pyrenoidosa. Food Chem. 2007;105(2):533–539.
  • Qi J, Kim SM. Characterization and immunomodulatory activities of polysaccharides extracted from green alga Chlorella ellipsoidea. Int J Biol Macromol. 2017;95:106–114.
  • Tabarsa M, Shin I-S, Lee JH, et al. An immune-enhancing water-soluble α-glucan from Chlorella vulgaris and structural characteristics. Food Sci Biotechnol. 2015;24(6):1933–1941.
  • El-Sheekh MM, Khairy HM, Gheda SF, et al. Application of Plackett–Burman design for the high production of some valuable metabolites in marine alga Nannochloropsis oculata. Egypt J Aquat Res. 2016;42(1):57–64.
  • Patel AK, Suseela M, Singh M, et al. Application of response surface methodology for optimization of biomass, carbohydrate and lipid production in BG11+ by Scenedesmus quadricauda. Int J Res Eng Appl Sci 2015;5:199–215.
  • Samiee-Zafarghandi R, Karimi-Sabet J, Abdoli MA, et al. Increasing microalgal carbohydrate content for hydrothermal gasification purposes. Renew Energy. 2018;116:710–719.
  • Margarites ACF, Costa J. Increment of carbohydrate concentration of Chlorella minutissima microalgae for bioethanol production. J Eng Res Appl. 2014;4:80–86.
  • Baiee MA, Salman JM. Effect of phosphorus concentration and light intensity on protein content of microalga Chlorella vulgaris. Mesop Environ J. 2016;2:75–86.
  • El-Sheek M, Rady A. Effect of phosphorus starvation on growth, photosynthesis and some metabolic processes in the unicellular green alga Chlorella kessleri. Phyton 1995;35:139–151.
  • Markou G, Chatzipavlidis I, Georgakakis D. Carbohydrates production and bio-flocculation characteristics in cultures of Arthrospira (Spirulina) platensis: improvements through phosphorus limitation process. Bioenerg Res. 2012;5(4):915–925.
  • Martín-Juárez J, Markou G, Muylaert K, et al. Breakthroughs in bioalcohol production from microalgae: solving the hurdles. Microalgae-Based Biofuels and Bioproducts. Elsevier; 2018. p. 183–207.
  • Markou G, Vandamme D, Muylaert K. Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Res. 2014;65:186–202.
  • Douskova I, Doucha J, Machat J, editors, et al. Microalgae as a means for converting flue gas CO2 into biomass with high content of starch. Bioenergy: challenges and opportunities international conference and exhibition on bioenergy; 2008 April 6–9; Guimarães, Portugal.
  • Markou G, Nerantzis E. Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv. 2013;31(8):1532–1542.
  • Dean AP, Nicholson JM, Sigee DC. Impact of phosphorus quota and growth phase on carbon allocation in Chlamydomonas reinhardtii: an FTIR microspectroscopy study. Eur J Phycol. 2008;43(4):345–354.
  • Zhang Q, Wang T, Hong Y. Investigation of initial pH effects on growth of an oleaginous microalgae Chlorella sp. HQ for lipid production and nutrient uptake. Water Sci Technol. 2014;70(4):712–719.
  • Qiu R, Gao S, Lopez PA, et al. Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Res. 2017;28:192–199.
  • Liang G, Mo Y, Tang J, et al. Improve lipid production by pH shifted-strategy in batch culture of Chlorella protothecoides. Afr J Microbiol Res 2011;5:5030–5038.
  • Myers J. Growth characteristics of algae in relation to the problems of mass culture. In: Burlew JS, editor. Algal culture from laboratory to pilot plant, Vol. 600. Washington (DC): Carnegie Inst Wash Publ; 1953. p. 37–54.
  • Khalil ZI, Asker MM, El-Sayed S, Kobbia IA. Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. World J Microbiol Biotechnol. 2010;26(7):1225–1231.
  • Markou G, Angelidaki I, Georgakakis D. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol. 2012;96(3):631–645.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.