193
Views
10
CrossRef citations to date
0
Altmetric
Articles

Physical characterization of briquettes produced from paper pulp and Mesua ferrea mixtures

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 333-340 | Received 12 Apr 2019, Accepted 04 Nov 2019, Published online: 27 Nov 2019

References

  • Baqir M, Kothari R, Singh RP. Fuel wood consumption, and its influence on forest biomass carbon stock and emission of carbon dioxide. A case study of Kahinaur, district Mau, Uttar Pradesh, India. Biofuels 2018;10:1–10.
  • Ramamoorthy NK, Sambavi TR, Renganathan S. A study on cellulase production from a mixture of lignocellulosic wastes. Process Biochem. 2019;83:148–158.
  • Taghizadeh-Alisaraei A, Hosseini SH, Ghobadian B, et al. Biofuel production from citrus wastes: A feasibility study in Iran. Renew Sustain Energy Rev. 2017;69:1100–1112.
  • Trubetskaya A, Leahy JJ, Yazhenskikh E, et al. Characterization of woodstove briquettes from torre fi ed biomass and coal. Energy 2019;171:853–865.
  • Mendoza-Martinez CL, Sermyagina E, Carneiro O, et al. Production and characterization of coffee-pine wood residue briquettes as an alternative fuel for local firing systems in Brazil. Biomass Bioenergy. 2019;123:70–77.
  • Ramamoorthy NK, T R TR, Sahadevan R. Production of bioethanol by an innovative biological pre-treatment of a novel mixture of surgical waste cotton and waste cardboard. Energy Sourc, A: Recover Util Environ Eff. 2019;1–12.
  • Tursi A. A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res J. 2019;22:962–979.
  • Karunanithy C, Wang Y, Muthukumarappan K, et al. Physiochemical characterization of briquettes made from different feedstocks. Biotechnol Res Int. 2012;2012:1–12.
  • Kumar RN, Ravi S, Sahadevan R. Production of bio-ethanol from an innovative mixture of surgical waste cotton and waste card board after ammonia pre-treatment. Energy Sourc, A: Recover Util Environ Eff. 2018;40(20):1–7.
  • Matali S, Rahman NA, Idris SS, et al. Lignocellulosic Biomass Solid Fuel Properties Enhancement via Torrefaction. Procedia Eng. 2016;148:671–678.
  • Bajwa DS, Peterson T, Sharma N, et al. A review of densified solid biomass for energy production. Renew Sustain Energy Rev. 2018;96:296–305.
  • Zafar S. Biomass Resources in Malaysia [Internet]. Biomass Energy 2015; [cited 2018 May 13]. Available from: http://www.bioenergyconsult.com/biomass-energy-malaysia/Biomass
  • Government of Malaysia, Economic Planning Unit of the PM. Seventh Malaysia Plan 1996–2000 | ESCAP Policy Documents Managment [Internet] 1996. [cited 2018 May 13]. Available from: https://policy.asiapacificenergy.org/node/1280.
  • Tock JY, Lai CL, Lee KT, et al. Banana biomass as potential renewable energy resource: A Malaysian case study. Renew Sustain Energy Rev. 2010;14(2):798–805. Vol.
  • Guo M, Song W, Buhain J. Bioenergy and biofuels: History, status, and perspective. Renew Sustain Energy Rev. 2015;42:712–725.
  • Gendek A, Aniszewska M, Malaťák J, et al. Evaluation of selected physical and mechanical properties of briquettes produced from cones of three coniferous tree species. Biomass and Bioenergy. 2018;117:173–179.
  • Watts N, Amann M, Ayeb-Karlsson S, et al. The Lancet Countdown: tracking progress on health and climate change. Lancet 2018;391(10120):581–630.
  • United Nations. Affordable and clean energy: why it matters [Internet]. 2015. 87–95. Available from: http://www.un.org/sustainabledevelopment/wp-content/uploads/2016/08/7_Why-it-Matters_Goal-7_CleanEnergy_2p.pdf.
  • Watts N, Amann M, Ayeb-Karlsson S, et al. The 2018 report of the Lancet Countdown on health and climate change: shaping the health of nations for centuries to come. Lancet 2018;392(10163):2479–2514.
  • Adewale AI, Mirghani MES, Muyibi SA, et al. Extraction and antibacterial activity of Nahar (Mesua ferrea) seed kernels’ oil. ACT-Biotechnology Res Commun. 2011;1(1):28–32.
  • Sharma A, Sharma S, R R, et al. Mesua ferrae linn:- a review of the Indian Medical Herb. SRP. 2016;8(1):19–23.
  • Khalib SNB, Zakarya IA, Tengku Izhar TN. Composting of garden waste using indigenous microorganisms (IMO) as organic additive. Int J Integr Eng 2018;10(9):140–145.
  • Jekayinfa SO, Omisakin OS. The energy potentials of some agricultural wastes as local fuel materials in Nigeria. Agric Eng Int CIGR Ejournal 2005;7(Manuscript EE 05 003):1–10.
  • Kumar A, Subramanian KA. Role of biomass supply chain management in sustainable bioenergy production. Biofuels 2017;10:1–11.
  • Deepak KB, Jnanesh NA. An experimental study of various characteristics of biomass briquettes made from Areca Leaves–an alternative sourece of energy. Natl Conf Challenges Res Technol Coming Decad. (CRT 2013), Ujire, 2013, pp. 1-7. doi: https://doi.org/10.1049/cp.2013.2527.
  • De Oliveira Maia BG, Souza O, Marangoni C, et al. Production and characterization of fuel briquettes from bananalLeaves waste. Chem Eng Trans 2014;37:439–444.
  • Birwatkar VR, Khandetod YP, Mohod AG, et al. Physical and thermal properties of biomass briquetted fuel. Ind J Sci Res Tech 2014;2(4):55–62.
  • Anggono W, Sutrisno Suprianto FD, Evander J. Biomass briquette investigation from Pterocarpus Indicus leaves waste as an alternative renewable energy. IOP Conf Ser Mater Sci Eng. 2017;241(1):1–5.
  • Dinesha P, Kumar S, Rosen MA. Biomass briquettes as an alternative fuel: a comprehensive. Energy Technol. 2018;1(11):1–21.
  • Holik H, Heß H, Müller W, et al. Unit operations In: Handbook of paper and board: 2nd ed. Weinheim, Germany: John Wiley & Sons; 2013.
  • Lela B, Barišić M, Nižetić S. Cardboard/sawdust briquettes as biomass fuel: physical-mechanical and thermal characteristics. Waste Manag. 2016;47:236–245.
  • Olorunnisola A. Production of fuel briquettes from waste paper and coconut husk admixtures. CIGR Ejournal 2007;IX:1–11.
  • Tamilvanan A. Preparation of biomass briquettes using various agro-residues and waste papers. Jour of Biof. 2013;4(2):47–55.
  • Oyelaran OA, Bolaji BO, Waheed MA, et al. Characterization of briquettes produced from groundnut shell and waste paper admixture. Iran J energy Environ. 2015;6(1):34–38.
  • Odusote JK, Onowuma SA, Fodeke EA. Production of paperboard briquette using waste paper and sawdust. Jou Eng Res. 2016;13(1):80–88.
  • Romallosa A, Kraft E. Feasibility of biomass briquette production from municipal waste streams by integrating the informal sector in the Philippines. Resources 2017;6(1):12–19.
  • Mekhilef S, Saidur R, Safari A, et al. Biomass energy in Malaysia: current state and prospects. Renew Sustain Energy Rev. 2011; Sep 115(7):3360–3370.
  • Mitchual SJ, Frimpong-Mensah K, Darkwa NA. Relationship between physico-mechanical properties, compacting pressure and mixing proportion of briquettes produced from Maize Cobs and Sawdust. JSBS. 2014;04(01):50–60.
  • Davies RM, Davies OA. Physical and combustion characteristics of briquettes made from water hyacinth and phytoplankton scum as binder. J Combust. 2013;2013:1–7.
  • Roy R, Kundu K, Kar S, et al. Production and evaluation of briquettes made from dry leaves, wheat straw, saw dust using paper pulp and cow dung as binder. Res Front. 2015;3(4):51–58.
  • Muazu RI, Stegemann JA. Effects of operating variables on durability of fuel briquettes from rice husks and corn cobs. Fuel Process Technol. 2015;133:137–145.
  • Antwi-Boasiako C, Acheampong BB. Strength properties and calorific values of sawdust-briquettes as wood-residue energy generation source from tropical hardwoods of different densities. Biomass and Bioenergy. 2016;85:144–152.
  • Sawadogo M, Kpai N, Tankoano I, et al. Cleaner production in Burkina Faso: Case study of fuel briquettes made from cashew industry waste. J Clean Prod J. 2018;195:1047–1056.
  • ASTM D440-86. Standard test method of drop shatter test for coal. West Conshohocken, PA: ASTM International; 1998, p. 188–191.
  • ASTM D5865-13. Standard Test Method for Gross Calorific Value of Coal and Coke. West Conshohocken, PA: ASTM International; 2013.
  • Yank A, Ngadi M, Kok R. Physical properties of rice husk and bran briquettes under low pressure densification for rural applications. Biomass Bioenergy. 2016;84:22–30.
  • Tumuluru JS, Wright CT, Hess JR, et al. A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioprod Bioref. 2011; 5(6): 683–707
  • Avelar NV, Rezende AAP, Carneiro A, de CO, et al. Evaluation of briquettes made from textile industry solid waste. Renew Energy. 2016;91:417–424.
  • Chen L, Xing L, Han L. Renewable energy from agro-residues in China: solid biofuels and biomass briquetting technology. Renew Sustain Energy Rev. 2009;13(9):2689–2695.
  • Kaliyan N, Vance Morey R. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy. 2009;33(3):337–339.
  • Ku Ahmad KZ, Sazali K, Kamarolzaman AA. Characterization of fuel briquettes from banana tree waste. In: Materials today: proceedings. Elsevier Ltd; Melaka, Malaysia: 5, 2018. p. 21744–21752.
  • Obernberger I, Thek G. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenergy. 2004;27(6):653–669.
  • Zhang Y, Ghaly AE, Li B. Availability and physical properties of residues from major agricultural crops for energy conversion through thermochemical processes. Am J Agric Biol Sci. 2012;7(3):312–321.
  • Eriksson S, Prior M. The briquetting of agricultural wastes for fuel [Internet]. 11th ed. Rome, Italy: Fao; 1990. [cited 2018 May 24]. 137p. Available from: http://www.fao.org/docrep/t0275e/t0275e00.htm.
  • Sotannde OA, Oluyege AO, Abah GB. Physical and combustion properties of briquettes from sawdust of Azadirachta indica. J For Res. 2010;21(1):63–67.
  • Mitchual SJ, Frimpong-Mensah K, Darkwa NA. Effect of species, particle size and compacting pressure on relaxed density and compressive strength of fuel briquettes. Int J Energy Environ Eng. 2013;4(1):30–36.
  • Taulbee D, Patil DP, Honaker RQ, Parekh BK. Briquetting of coal fines and sawdust part I: Binder and briquetting-parameters evaluations. Int J Coal Prep Util. 2009;29(1):1–22.
  • Križan P, Šooš Ľ, Vukelić Đ. A study of impact technological parametres on the briquetting process. In: Working and living environmental protection 2009;6(1): 39–47.
  • Borowski G. The possibility of utilizing coal briquettes with a biomass. Environ Prot Eng. 2007;33(2):79–87.
  • Li F, Zhang M. Technological parameters of biomass briquetting of macrophytes in Nansi Lake. Energy Procedia. 2011;5:2449–2454.
  • Onukak I, Mohammed-Dabo I, Ameh A, et al. Production and characterization of biomass briquettes from tannery solid waste. Recycling 2017;2(17): 2 - 19
  • Chiew YL, Iwata T, Shimada S. System analysis for effective use of palm oil waste as energy resources. Biomass Bioenergy. 2011;35(7):2925–2935.
  • Everard CD, McDonnell KP, Fagan CC. Prediction of biomass gross calorific values using visible and near infrared spectroscopy. Biomass Bioenergy. 2012;45:203–211.
  • Onuegbu TU, Ogbu IM, Ejikeme C. Comparative analyses of densities and calorific values of wood and briquettes samples prepared at moderate pressure and ambient temperature. Int J Plant, Anim Environ Sci. 2012;2(1):40–45.
  • Jittabut P. Physical and thermal properties of briquette fuels from rice straw and sugarcane leaves by mixing molasses. Energy Procedia. 2015;79:2–9.
  • Romallosa A. Quality analyses of biomass briquettes produced using a jack-driven briquetting machine. Int J Appl Sci Technol. 2017;7(1):8–16.
  • Brožek M. Evaluation of selected properties of briquettes from recovered paper and board. Res Agr Eng. 2016;61(2):66–71.
  • Obi OF, Akubuo CO, Nwankwo V. Development of an appropriate briquetting machine for use in rural communities. Int J Eng Adv Technol. 2013;2(4):578–582.
  • Oladeji JT. Fuel characterization of briquettes produced from corncob and rice husk resides. Pacific J Sci Technol. 2010;11(1):101–106.
  • Fernandes ERK, Marangoni C, Souza O, et al. Thermochemical characterization of banana leaves as a potential energy source. Energy Convers Manag. 2013: 75:603–608.
  • Huko D, Kamau DN, Ogola WO. Effects of varying particle size on mechanical and combustion characteristics of mango seed shell cashew nut shell composite briquettes. Int J Eng Sci Invent. 2015;4(5):32–39.
  • Jensen PD, Mattsson JE, Kofman PD, et al. Tendency of wood fuels from whole trees, logging residues and roundwood to bridge over openings. Biomass Bioenergy. 2004;26(2):107–113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.