264
Views
8
CrossRef citations to date
0
Altmetric
Articles

Enhancing anaerobic digestion of okra waste with the addition of iron nanocomposite (Ppy/Fe3O4)

ORCID Icon & ORCID Icon
Pages 503-512 | Received 10 Sep 2019, Accepted 04 Dec 2019, Published online: 23 Dec 2019

References

  • Uçkun Kiran E, Trzcinski AP, Liu Y. Enhancing the hydrolysis and methane production potential of mixed food waste by an effective enzymatic pretreatment. Bioresour Technol. 2015;183:47–52.
  • World Energy Council 2018. World energy resources: biomass [cited 2018 Nov 10]. Available from: https://www.worldenergy.org/data/resources/resource/biomass/
  • Hussein AK. Applications of nanotechnology in renewable energies – A comprehensive overview and understanding. Renew Sust Energ Rev. 2015;42:460–476.
  • FAOSTAT 2016. Okra, production quantity (tons)- for all countries. Food and agriculture Organization of the United Nations. www.fao.org/faostat/en/data/QC. (Accessed: March 14, 2019)
  • Duman N, Kocak ED, Merdan N, et al. Nonwoven production from agricultural Okra wastes and investigation of their thermal conductivities. IOP Conf Ser: Mater Sci Eng. 2017;254 :192007.
  • Olaniyan AM, Omoleyomi BD. Characteristics of Okra under different process pretreatments and different drying conditions. J Food Process Technol. 2013;4(237):1–6. doi:10.4172/2157-7110.1000237
  • Alam MS, Arifuzzaman Khan GM. 2007 Chemical analysis of okra bast fiber (Abelmoschus esculentus) and its physico-chemical properties. J Text Apparel, Technol Manag. 2007; 5(4) :1–9.
  • Ugwu SN, Ugwuishiwu BO, Nwoke OA, et al. Kinetic studies on methane production from okra wastes using growth functions. Proceedings of the 3rd NIAE-SE Regional Conference, Univ. of Nig., Nsukka 2018 Aug 27–30; 63–71.
  • Romero-Güiza MS, Vila J, Mata-Alvarez J, et al. The role of additives on anaerobic digestion: a review. Renew Sustain Energ Rev. 2016;58:1486–1499. doi:10.1016/j.rser.2015.12.094
  • Cai J, He Y, Yu X, et al. Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew Sustain Energ Rev. 2017;76:309–322.
  • Akunna JC. Anaerobic waste-wastewater treatment and biogas plants: a practical handbook. 2018. Boca Raton, FL: CRC Press, Taylor & Francis Group [cited June 2018]. Availablefrom: http://www.crcnetbase.com/doi/book/10.1201/9781351170529.
  • Li W, Khalid H, Zhu Z, et al. Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin. Appl Energ. 2018;226:1219–1228.
  • Hao X, Wei J, van-Loosdrecht MCM, et al. Analysing the mechanisms of sludge digestion enhanced by iron. Water Res. 2017;117:58–67.
  • Liu R, Hao X, Wei J. Function of homoacetogenesis on the heterotrophic methane production with exogenous H2/CO2 involved. Chem Eng J. 2016;284:1196–1203. doi:10.1016/j.cej.2015.09.081.
  • Zhao Z, Zhang Y, Li Y, et al. Comparing the mechanisms of ZVI and Fe3O4 for promoting waste activated sludge digestion. Water Res. 2018;144:126–133.
  • Zhang Y, Feng Y, Yu Q, et al. Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron. Bioresour Technol. 2014;159:297–304.
  • Hashimoto AG. Pretreatment of wheat straw for fermentation to methane. Biotechnol Bioeng. 1986;28(12):1857–1866. 2004
  • Abdelsalam E, Samer M, Attia YA, et al. Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renew Energ. 2016;87:592–598.
  • Feng Y, Zhang Y, Quan X, et al. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero-valent iron. Water Res. 2014;52:242–250. doi:10.1016/j.watres.2013.10.072.
  • Casals E, Barrena R, García A, et al. Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production. Small. 2014. 2014;10:2801–2808. González E, et al. Elgado L, Busquets-Fité M, Font X, Arbiol J, Glatzel P, Kvashnina K, Sánchez A, Puntes V,
  • Banfield JF, Zhang H. Nanoparticles in the Environment. Rev Mineralog Geochem. 2001. 2001;44(1):1–58. doi: 10.2138/rmg.2001.44.01
  • Emerson D, Fleming EJ, McBeth JM. Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol. 2010;64(1):561–583. doi:10.1146/annurev.micro.112408.134208.
  • Tang SCN, Lo I. Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res. 2013;47(8):2613–2632. doi:10.1016/j.watres.2013.02.039
  • Chen C, Konishi Y, Nomura T. Enhancement of methane production by Methanosarcina barkeri using Fe3O4 nanoparticles as iron sustained release agent. Adv Powder Technol. 2018;29(10):2429–2433.
  • Ram MS, Singh L, Suryanarayana MVS, et al. Effect of iron, nickel and cobalt on bacterial activity and dynamics during anaerobic oxidation of organic matter. Water, Air Soil Pollut. 2000;117(1/4):305–312.
  • Zhuang L, Tang J, Wang Y, et al. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation. J. Hazard Mater. 2015;293:37–45.
  • Tan J, Wang J, Xue J, et al. Methaneproduction and microbial community analysis in the goethite facilitated anaerobic reactors using algal biomass. Fuel. 2015. 2015;145:196–201.
  • Baek G, Kim J, Lee C. Influence of ferric oxyhydroxide addition on biomethanation of waste activated sludge in a continuous reactor. Bioresour. Technol. 2014;166:596–601.
  • Noonari AA, Mahar RB, Sahito AR, et al. Anaerobic co-digestion of canola straw and banana plant wastes with buffalo dung: Effect of Fe3O4 nanoparticles on methane yield. Renew Energ. 2019;133:1046–1054.
  • Auffan M, Achouak W, Rose J, et al. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol. 2008;42(17):6730–6735. 10.1021/es800086f.
  • Suanon F, Sun Q, Mama D, et al. Effect of nanoscale zero-valent iron and magnetite (Fe3O4) on the fate of metals during anaerobic digestion of sludge. Water Res. 2016;88:897–903.
  • Abdelsalam EM, Samer YA, Attia MA, et al. Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure. Energ 2017;120:842–853. 2017
  • Ali A, Mahar RB, Soomro RA, et al. Fe3O4 nanoparticles facilitated anaerobic digestion of organic fraction of municipal solid waste for enhancement of methane production. Energ Sourc Part A: Recov Utilization, Environ Effects. 2017;39(16):1815–1822.
  • Aigbe UO, Das R, Ho WH, et al. A novel method for removal of Cr(VI) using polypyrrole magnetic nanocomposite in the presence of unsteady magnetic fields. Sep Purif Technol. 2018;194:377–387.
  • Bhaumik M, Maity A, Srinivasu VV, et al. Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. J. Hazardous Mater. 2011. 2011;190(1–3):381–390.
  • Kim YS, Kim YH. Application of ferro-cobalt magnetic fluid for oil sealing. J Magn Mater.2003;267(1):105–110.
  • APHA. Standard methods for the examination of water and wastewater, 21st ed. Washington, DC: American Public Health Association/American Water Works Association/Water Environment Federation; 2005.
  • Amen TWM, Eljamal O, Khalil AME, et al. Biochemical methane potential enhancement of domestic sludge digestion by adding pristine iron nanoparticles and iron nanoparticles coated zeolite compositions. J Environ Chem Eng. 2017;5(5):5002–5013. doi:10.1016/j.jece.2017.09.030
  • Kafle GK, Kim SH, Sung KI. Ensiling of fish industry waste for biogas production: A lab scale evaluation of Biochemical Methane Potential (BMP) and kinetics. Bioresour Technol. 2013;127:326–336.
  • Ugwu SN, Enweremadu CC. Effects of pre-treatments and co-digestion on biogas production from Okra waste. J Renew Sustain Energ. 2019;11(1):013101.
  • Talha Z, Hamid A, Guo D, et al. Ultrasound assisted alkaline pre-treatment of sugarcane filter mud for performance enhancement in biogas production. Int J Agric Biol Eng. 2018;11(1):231.
  • Mahanty B, Zafar M, Han MJ, et al. Optimization of co-digestion of various industrial sludges for biogas production and sludge treatment: Methane production potential experiments and modeling. Waste Manage. 2014;34(6):1018–1024.
  • Najafi B, Faizollahzadeh Ardabili S. Application of ANFIS, ANN, and logistic methods in estimating biogas production from spent mushroom compost (SMC). Resourc Conserv Recyc. 2018;133:169–178.
  • Kigozi R, Muzenda E, Aboyade AO. Biogas technology: current trends, opportunities and challenges. in 6th Int’l Conf. on Green Tech, Reknewable Energy & Environmental Eng’g. (ICGTREEE’2014). Cape Town South Africa, p. 1–34
  • Smith AD, Holtzapple MT. Investigation of the optimal carbon-nitrogen ratio and carbohydrate-nutrient blend for mixed-acid batch fermentations. Bioresour Technol. 2011;102(10):5976–5987.
  • Ambuchi JJ, Zhang Z, Feng Y. Biogas enhancement using iron oxide nanoparticles and multi-wall carbon nanotubes. Intern Scholarly and Sci Res Innov. 2016;10(10):scholar.waset.org/1307–6892/10005619. 2016
  • Xu SY, He CQ, Luo LW, et al. Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester. Bioresour. Technol. 2015;196:606–612.
  • Raposo F, Borja R, Martín MA, et al. Influence of inoculum-substrate ratio on the anaerobic digestion of sunflower oil cake in batch mode: process stability and kinetic evaluation. Chem Eng J. 2009;149(1-3):70–77.
  • Kafle KK, Kim SH. Kinetic study of the anaerobic digestion of swine manure at mesophilic temperature: a lab scale batch operation. J Biosyst Eng. 2012;37(4):233–244. doi:10.5307/JBE.2012.37.4.233.
  • Budiyono IS, Sumardiono S. Kinetic model of biogas yield production from vinasse at various initial pH: comparison between modified gompertz model and first order kinetic model. RJASET. 2014;7(13):2798–2805.
  • Kafle GK, Chen L. Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Manage. 2016;48:492–502. 2016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.