229
Views
18
CrossRef citations to date
0
Altmetric
Articles

Lignite biosolubilization and bioconversion by Bacillus sp.: the collation of analytical data

, , , &
Pages 247-258 | Received 08 Nov 2019, Accepted 06 Apr 2020, Published online: 27 Apr 2020

References

  • Mapelli F, Marasco R, Balloi A, et al. Mineral-microbe interactions: biotechnological potential of bioweathering. J Biotechnol. 2012;157(4):473–481.
  • Natarajan KA. 2018. Microbially induced mineral beneficiation. In: Biotechnology of metals. Amsterdam: Elsevier. p. 243–304.
  • Otsuki A. 2016. Use of microorganisms for complex ORE beneficiation: bioflotation as an example. In: Encyclopedia of biocolloid and biointerface science. 2 Vols. Hoboken (NJ): Wiley. p. 108–117.
  • Mishra S, Panda S, Pradhan N, et al. 2015. Microbe-mineral interactions: exploring avenues towards development of a sustainable microbial technology for coal beneficiation. In: Sukla LB, Pradhan N, Panda S, Mishra BK, editors. Environmental microbial biotechnology. soil biology. vol. 45. Cham: Springer. p. 33–52.
  • Piccolo A. The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Adv Agron. 2002;75:57–134.
  • Kurniati E, Muljani S, Virgani DG, et al. Humic acid isolations from lignite by ion exchange method. J Phys Conf Ser. 2018;953:012234.
  • Tahir MM, Khurshid M, Khan MZ, et al. Lignite-derived humic acid effect on growth of wheat plants in different soils. Pedosphere. 2011;21(1):124–131.
  • Derrien M, Lee YK, Park J-E, et al. Spectroscopic and molecular characterization of humic substances (HS) from soils and sediments in a watershed: comparative study of HS chemical fractions and the origins. Environ Sci Pollut Res. 2017;24(20):16933–16945.
  • Doskočil L, Burdíková-Szewieczková J, Enev V, et al. Spectral characterization and comparison of humic acids isolated from some European lignites. Fuel. 2018;213:123–132.
  • Droussi Z, D’Orazio V, Hafidi M, et al. Elemental and spectroscopic characterization of humic-acid-like compounds during composting of olive mill by-products. J Hazard Mater. 2009;163(2–3):1289–1297.
  • Vick SHW, Greenfield P, Pinetown KL, et al. Succession patterns and physical niche partitioning in microbial communities from subsurface coal seams. iScience. 2019;12:152–167.
  • Haider R, Ghauri MA, Rahim MU. On comparison between fungal and bacterial pretreatment of coal for enhanced biogenic methane generation. Geomicrobiol J. 2018;35(5):432–437.
  • Ralph JP, Catcheside DEA. Recovery and analysis of solubilised brown coal from cultures of wood-rot fungi. J Microbiol Methods. 1996;27(1):1–11.
  • Hölker U, Höfer M. Solid substrate fermentation of lignite by the coal-solubilizing mould, Trichoderma atroviride, in a new type of bioreactor. Biotechnol Lett. 2002;24(19):1643–1645.
  • Hofrichter M, Fritsche W. Depolymerization of low-rank coal by extracellular fungal enzyme systems. Appl Microbiol Biotechnol. 1996;46(3):220–225.
  • Ralph JP, Catcheside DEA. Transformations of low rank coal by Phanerochaete chrysosporium and other wood-rot fungi. Fuel Process Technol. 1997;52(1–3):79–93.
  • Yin S, Tao X, Shi K. Bio-solubilization of Chinese lignite II: protein adsorption onto the lignite surface. Mining Sci Technol. 2009;19(3):363–368. [China]
  • Kwiatos N, Jędrzejczak-Krzepkowska M, Strzelecki B, et al. Improvement of efficiency of brown coal biosolubilization by novel recombinant Fusarium oxysporum laccase. AMB Expr. 2018;8(1):133.
  • Machnikowska H, Pawelec K, Podgórska A. Microbial degradation of low rank coals. Fuel Process Technol. 2002;77-78:17–23.
  • Gupta RK, Deobald LA, Crawford DL. Depolymerization and chemical modification of lignite coal byPseudomonas cepacia strain DLC-07. Appl Biochem Biotechnol. 1990;24–25(1):899–911.
  • Laborda F, Fernández M, Luna N, et al. Study of the mechanisms by which microorganisms solubilize and/or liquefy Spanish coals. Fuel Process Technol. 1997;52(1-3):95–107.
  • Wang B, Wang Y, Xiaoyong C, et al. Bioconversion of coal to methane by microbial communities from soil and from an opencast mine in the Xilingol grassland of northeast China. Biotechnol Biofuels. 2019;12(1):236..
  • Füchtenbusch B, Steinbüchel A. Biosynthesis of polyhydroxyalkanoates from low-rank coal liquefaction products by Pseudomonas oleovorans and Rhodococcus ruber. Appl Microbiol Biotechnol. 1999;52(1):91–95.
  • Jiang F, Li Z, Lv Z, et al. The biosolubilization of lignite by Bacillus sp. Y7 and characterization of the soluble products. Fuel. 2013;103:639–645.
  • Pokorny R, Olejnikova P, Balog M, et al. Characterization of microorganisms isolated from lignite excavated from the Zahorie coal mine (southwestern Slovakia). Res Microbiol. 2005;156(9):932–943.
  • Achi OK. Growth and coal-solubilizing activity of Penicillium simplicissimum on coal-related aromatic compounds. Bioresour Technol. 1994;48(1):53–57.
  • Dai S, Wang X, Seredin VV, et al. Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: new data and genetic implications. Int J Coal Geol. 2012;90–91:72–99.
  • David Y, Baylon MG, Pamidimarri SDVN, et al. Screening of microorganisms able to degrade low-rank coal in aerobic conditions: potential coal biosolubilization mediators from coal to biochemicals. Biotechnol Bioproc E. 2017;22(2):178–185.
  • Romanowska I, Strzelecki B, Bielecki S. Biosolubilization of Polish brown coal by Gordonia alkanivorans S7 and Bacillus mycoides NS1020. Fuel Process Technol. 2015;131:430–436.
  • Sagar K, Singh SP, Goutam KK, et al. Assessment of five soil DNA extraction methods and a rapid laboratory-developed method for quality soil DNA extraction for 16S rDNA-based amplification and library construction. J Microbiol Methods. 2014;97:68–73.
  • Valero N, Gómez L, Pantoja M, et al. Production of humic substances through coal-solubilizing bacteria. Braz J Microbiol. 2014;45(3):911–918.
  • Pospíšilová Ľ, Fasurová N. Spectroscopic characteristics of humic acids originated in soils and lignite. Soil Water Res. 2009;4(4):168–175.
  • Dong L, Yuan Q, Yuan H. Changes of chemical properties of humic acids from crude and fungal transformed lignite. Fuel. 2006;85(17–18):2402–2407.
  • Vijayalakshmi SP, Raichur AM. The utility of Bacillus subtilis as a bioflocculant for fine coal. Colloids Surf B. 2003;29(4):265–275.
  • El-Midany AA, Abdel-Khalek MA. Reducing sulfur and ash from coal using Bacillus subtilis and Paenibacillus polymyxa. Fuel. 2014;115:589–595.
  • Shi KY, Yin SD, Tao XX, et al. Quantitative measurement of coal bio-solubilization by ultraviolet-visible spectroscopy. Energy Sources Part A. 2013;35(15):1456–1462.
  • Quigley DR, Ward B, Crawford DL, et al. Evidence that microbially produced alkaline materials are involved in coal biosolubilization. Appl Biochem Biotechnol. 1989;20–21(1):753–763.
  • Saikia BK, Boruah RK, Gogoi PK. FT-IR and XRD analysis of coal from Makum coalfield of Assam. J Earth Syst Sci. 2007;116(6):575–579.
  • Speight JG. Application of spectroscopic techniques to the structural analysis of coal. Appl Spectrosc Rev. 1994;29(2):117–169.
  • Valero N, Gómez L, Melgarejo L. Supramolecular characterization of humic acids obtained through the bacterial transformation of a low rank coal. J Braz Chem Soc. 2018;45(3):911–918.
  • Lu X, Hanna J, Johnson W. Source indicators of humic substances: an elemental composition, solid state 13C CP/MAS NMR and Py-GC/MS Study. Appl Geochem. 2000;15(7):1019–1033.
  • Xiao X, Chen Z, Chen B. H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials. Sci Rep. 2016;6(1):22644.
  • Gonzalez-Vila FJ, del Rio J, Almendros G, et al. Structural relationship between humic fractions from peat and lignites from the Miocene Granada basin. Fuel. 1994;73(2):215–221.
  • Nasir S, Sarfaraz TB, Verheyen TV, et al. Structural elucidation of humic acids extracted from Pakistani lignite using spectroscopic and thermal degradative techniques. Fuel Process Technol. 2011;92(5):983–991.
  • Fuentes M, González-Gaitano G, García-Mina JM. The usefulness of UV-visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts. Org Geochem. 2006;37(12):1949–1959.
  • Korshin GV, Li C-W, Benjamin MM. Monitoring the properties of natural organic matter through UV spectroscopy: a consistent theory. Water Res. 1997;31(7):1787–1795.
  • Francis C, Thorsten S, Julien B, et al. Fractionation of Suwannee river fulvic acid and Aldrich humic acid on α-Al2O3: spectroscopic evidence. Environ Sci Technol. 2008;42(23):8809–8815.
  • Vergnoux A, Di Rocco R, Domeizel M, et al. Effects of forest fires on water extractable organic matter and humic substances from Mediterranean soils: UV-vis and fluorescence spectroscopy approaches. Geoderma. 2011;160(3–4):434–443.
  • Zalba P, Amiotti NM, Galantini JA, et al. Soil humic and fulvic acids from different land-use systems evaluated by E4/E6 ratios. Commun Soil Sci Plant Anal. 2016;47(13–14):1675–1679.
  • Andersen DO, Alberts JJ, Takács M. Nature of natural organic matter (NOM) in acidified and limed surface waters. Water Res. 2000;34(1):266–278.
  • Senesi N, Miano TM, Provenzano MR, et al. Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy. Soil Sci. 1991;152(4):259–271.
  • Coble PG. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar Chem. 1996;51(4):325–346.
  • Bugden JBC, Yeung CW, Kepkay PE, et al. Application of ultraviolet fluorometry and excitation-emission matrix spectroscopy (EEMS) to fingerprint oil and chemically dispersed oil in seawater. Mar Pollut Bull. 2008;56(4):677–685.
  • Wang Z, Wei C, Shui H, et al. Synchronous fluorimetric characterization of heavy intermediates of coal direct liquefaction. Fuel. 2012;98:67–72.
  • McKnight DM, Boyer EW, Westerhoff PK, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr. 2001;46(1):38–48.
  • Zsolnay A, Baigar E, Jimenez M, et al. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere. 1999;38(1):45–50.
  • Huguet A, Vacher L, Relexans S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org Geochem. 2009;40(6):706–719.
  • Fu P, Kawamura K, Chen J, et al. Fluorescent water-soluble organic aerosols in the high Arctic atmosphere. Sci Rep. 2015;5(1):9845.
  • Sun J, Guo L, Li Q, et al. Three-dimensional fluorescence excitation-emission matrix (EEM) spectroscopy with regional integration analysis for assessing waste sludge hydrolysis at different pretreated temperatures. Environ Sci Pollut Res. 2016;23(23):24061–24067.
  • Bai Y, Su R, Han X, et al. Investigation of seasonal variability of CDOM fluorescence in the southern changjiang river estuary by EEM-PARAFAC. Acta Oceanol Sin. 2015;34(10):1–12.
  • Ward CR, Taylor JC. Quantitative mineralogical analysis of coals from the Callide Basin, Queensland, Australia using X-ray diffractometry and normative interpretation. Int J Coal Geol. 1996;30(3):211–229.
  • Manoj B, Kunjomana AG. Structural characterization of graphene layers in various Indian coals by X-ray diffraction technique. IOP Conf Ser Mater Sci Eng. 2015;73:012096.
  • Song D, Yang C, Zhang X, et al. Structure of the organic crystallite unit in coal as determined by X-ray diffraction. Mining Sci Technol [China]. 2011;21(5):667–671.
  • Singh AL, Singh PK, Kumar A, et al. Demineralization of rajmahal gondwana coals by bacteria: revelations from x-ray diffraction (xrd) and fourier transform infra red (FTIR) studies. Energy Explor Exploit. 2015;33(5):755–767.
  • Cardona IC, Márquez MA. Biodesulfurization of two Colombian coals with native microorganisms. Fuel Process Technol. 2009;90(9):1099–1106.
  • Hazrin-Chong NH, Manefield M. An alternative SEM drying method using hexamethyldisilazane (HMDS) for microbial cell attachment studies on sub-bituminous coal. J Microbiol Methods. 2012;90(2):96–99.
  • Peuravuori J, Pihlaja K. Molecular size distribution and spectroscopic properties of aquatic humic substances. Anal Chim Acta. 1997;337(2):133–149.
  • Řezáčová V, Gryndler M. Fluorescence spectroscopy: a tool to characterize humic substances in soil colonized by microorganisms? Folia Microbiol. 2006;51(3):215–221.
  • Liu T, Hou J, Peng Y. Effect of a newly isolated native bacteria, Pseudomonas sp. NP22 on desulfurization of the low-rank lignite. Int J Miner Process. 2017;162:6–11.
  • Gonzalez-Vila FJ, Martin F, Del Rio JC, et al. Structural characteristics and geochemical significance of humic acids isolated from three Spanish lignite deposits. Sci Total Environ. 1992;117–118:335–343.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.