306
Views
5
CrossRef citations to date
0
Altmetric
Articles

Experimental study and validation of a kinetic scheme for hydrothermal carbonization reactions

ORCID Icon, ORCID Icon, &
Pages 461-466 | Received 06 Jan 2020, Accepted 19 Apr 2020, Published online: 02 May 2020

References

  • Volpe M, Goldfarb JL, Fiori L. Hydrothermal carbonization of Opuntia ficus-indica cladodes: Role of process parameters on hydrochar properties. Bioresour Technol. 2018;247:310–318.
  • Oliveira I, Blöhse D, Ramke H-G. Hydrothermal carbonization of agricultural residues. Bioresour Technol. 2013;142:138–146.
  • Monedero E, Lapuerta M, Pazo A, et al. Effect of hydrothermal carbonization on the properties, devolatilization, and combustion kinetics of Chilean biomass residues. Biomass Bioenergy. 2019;130:105387.
  • Smith AM, Singh S, Ross AB. Fate of inorganic material during hydrothermal carbonisation of biomass: Influence of feedstock on combustion behaviour of hydrochar. Fuel. 2016;169:135–145.
  • Shirai M, Osada M, Yamaguchi A, et al. Recent advances in thermo-chemical conversion of biomass. Boston: Elsevier, 2015.
  • Zhang B, Heidari M, Regmi B, et al. Hydrothermal carbonization of fruit wastes: A promising technique for generating hydrochar. Energies. 2018;11(8):2022–2035.
  • Safari F, Javani N, Yumurtaci Z. Hydrogen production via supercritical water gasification of almond shell over algal and agricultural hydrochars as catalysts. Int J Hydrogen Energy. 2018;43:1071–1080. DOI
  • Jain A, Balasubramanian R, Srinivasan MP. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chem Eng J. 2016;283:789–805.
  • Zhang S, Zhu X, Zhou S, et al. Biochar from biomass waste. Amsterdam : Elsevier, 2019.
  • Lynam JG, Reza MT, Yan W, et al. Hydrothermal carbonization of various lignocellulosic biomass. Biomass Conv Bioref. 2015;5(2):173–181.
  • Vallejo F, Diaz-Robles LA, Cubillos F, et al. Performance evaluation of biomass blends with additives treated by hydrothermal carbonization. Chem Eng Trans. 2019;76:1453–1458.
  • Li L, Flora JRV, Caicedo JM, et al. Investigating the role of feedstock properties and process conditions on products formed during the hydrothermal carbonization of organics using regression techniques. Bioresour Technol. 2015;187:263–274.
  • Vallejo F, Diaz-Robles LA, Vega R, Cubillos F. A novel approach for prediction of mass yield and higher calorific value of hydrothermal carbonization by a robust multilinear model and regression trees. J Energy Inst. 2020.
  • Basso D, Weiss-Hortala E, Patuzzi F, et al. In deep analysis on the behavior of grape marc constituents during hydrothermal carbonization. Energies. 2018;11(6):1379.
  • Jung D, Kruse A. Evaluation of Arrhenius-type overall kinetic equations for hydrothermal carbonization. J Anal Appl Pyrolysis. 2017;127:286–291.
  • Lucian M, Piro G, Fiori L. A novel reaction kinetics model for estimating the carbon content into Hydrothermal Carbonization products. Chem Eng Trans. 2018;65:379–384.
  • Reza MT, Yan W, Uddin MH, et al. Reaction kinetics of hydrothermal carbonization of loblolly pine. Bioresour Technol. 2013;139:161–169.
  • Hoekman SK, Broch A, Felix L, et al. Hydrothermal carbonization (HTC) of loblolly pine using a continuous, reactive twin-screw extruder. Energy Convers Manag. 2017;134:247–259.
  • Lucian M, Fiori L. Hydrothermal carbonization of waste biomass: Process design, modeling, energy efficiency and cost analysis. Energies. 2017;10(2):211–215.
  • McKendry P. Energy production from biomass (part 2): conversion technologies. Bioresour Technol. 2002;83(1):47–54.
  • Benavente V, Fullana A, Berge ND. Life cycle analysis of hydrothermal carbonization of olive mill waste: Comparison with current management approaches. J Clean Prod. 2017;142:2637–2648.
  • KnežEvić D, van Swaaij WPM, Kersten SRA, Hydrothermal conversion of biomass: I, glucose conversion in hot compressed water. Ind Eng Chem Res. 2009;48(10):4731–4743.
  • KnežEvić D, van Swaaij W, Kersten S, Hydrothermal conversion of biomass. II. Conversion of wood, pyrolysis oil, and glucose in hot compressed water. Ind Eng Chem Res. 2010;49(1):104–112.
  • Krylova AY, Zaitchenko VM. Hydrothermal carbonization of biomass: A review. Solid Fuel Chem. 2018;52(2):91–103.
  • Zhang R, El-Mashad HM, Hartman K, et al. Characterization of food waste as feedstock for anaerobic digestion. Bioresour Technol. 2007;98(4):929–935.
  • Funke A, Ziegler F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioprod Bioref. 2010;4(2):160–177.
  • Peterson AA, Vogel F, Lachance RP, et al. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ Sci. 2008;1(1):32.
  • Lu X, Berge ND. Influence of feedstock chemical composition on product formation and characteristics derived from the hydrothermal carbonization of mixed feedstocks. Bioresour. Technol. 2014;166:120–131.
  • Ro KS, Flora JRV, Bae S, et al. Properties of animal-manure-based hydrochars and predictions using published models. ACS Sustainable Chem Eng. 2017;5(8):7317–7324.
  • Wang T, Zhai Y, Zhu Y, et al. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew Sustain Energy Rev. 2018;90:223–247.
  • Reza MT, Wirth B, Lüder U, et al. Behavior of selected hydrolyzed and dehydrated products during hydrothermal carbonization of biomass. Bioresour Technol. 2014;169:352–361.
  • Dinjus E, Kruse A, Tröger N. Hydrothermal Carbonization - 1. Influence of lignin in lignocelluloses. Chem Eng Technol. 2011;34(12):2037–2043.
  • Kieseler S, Neubauer Y, Zobel N. Ultimate and proximate correlations for estimating the higher heating value of hydrothermal solids. Energy Fuels. 2013;27(2):908–918.
  • Mumme J, Eckervogt L, Pielert J, et al. Hydrothermal carbonization of anaerobically digested maize silage. Bioresour Technol. 2011;102(19):9255–9260.
  • Schwald W, Bobleter O. Hydrothermolysis of cellulose under static and dynamic conditions at high temperatures. J Carbohydr Chem. 1989;8(4):565–578.
  • Adschiri T, Hirose S, Malaluan R, et al. Noncatalytic conversion of cellulose in supercritical and subcritical water. J Chem Eng Japan/JCEJ. 1993;26(6):676–680.
  • Mochidzuki K, Sakoda A, Suzuki M. Measurement of the hydrothermal reaction rate of cellulose using novel liquid-phase thermogravimetry. Thermochim Acta. 2000;348(1–2):69–76.
  • Sasaki M, Adschiri T, Arai K. Kinetics of cellulose conversion at 25 MPa in sub- and supercritical water. AIChE J. 2004;50(1):192–202.
  • Sasaki M, Fang Z, Fukushima Y, et al. Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res. 2000;39(8):2883–2890.
  • Garrote G, Domínguez H, Parajó JC. Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Werkst. 1999;57(3):191–202.
  • Tekin K, Karagöz S, Bektaş S. A review of hydrothermal biomass processing. Renew Sustain Energy Rev. 2014;40:673–687. doi: https://doi.org/10.1016/j.rser.2014.07.216
  • Bobleter O. Hydrothermal degradation of polymers derived from plants. Prog Polym Sci. 1994;19(5):797–841.
  • Jatzwauck M, Schumpe A. Kinetics of hydrothermal carbonization (HTC) of soft rush. Biomass Bioenergy. 2015;75:94–100.
  • Ahuja P, Kumar S, Singh PC. A model for primary and heterogeneous secondary reactions of wood pyrolysis. Chem Eng Technol. 1996;19(3):272–282.
  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna; 2019.
  • Faraway J. Linear Models with R. Boca Raton (FL): CRC Press; 2014.
  • Wickham H. Ggplot2: Elegant graphics for data analysis. New York (NY): Springer-Verlag; 2016.
  • International Organization for Standardization. Solid Biofuels. Determination of Moisture Content. Oven Dry Method. Part 2: Total Moisture. Simplified Method, UNE-EN ISO 18134-2; 2017.
  • Sabio E, Álvarez-Murillo A, Román S, et al. Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: Influence of the processing variables. Waste Manag. 2016;47:122–132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.