316
Views
15
CrossRef citations to date
0
Altmetric
Articles

Potential of barley straw for high titer bioethanol production applying pre-hydrolysis and simultaneous saccharification and fermentation at high solid loading

, , , &
Pages 467-473 | Received 09 Dec 2019, Accepted 21 Apr 2020, Published online: 07 May 2020

References

  • De Bhowmick G, Sarmah AK, Sen R. Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresour Technol. 2018;247:1144–1154.
  • Hassan SS, Williams GA, Jaiswal AK. Lignocellulosic biorefineries in Europe: current state and prospects. Trends Biotechnol. 2018;37:231–234.
  • Food and Agriculture Organisation of the United Nations (FAO). [accessed 2019 Dec 1]. Available from: http://www.fao.org/faostat/en/#data/QC
  • Tye YY, Lee KT, Abdullah WNW, et al. The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renew Sust Energ Rev. 2016;60:155–172.
  • Zabed H, Sahu JN, Suely A, et al. Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sust Energ Rev. 2017;71:475–501.
  • Kumar AK, Sharma S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess. 2017;4(1):7.
  • Kim JS, Lee YY, Kim TH. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol. 2016;199:42–48.
  • Koppram R, Olsson L. Combined substrate, enzyme and yeast feed in simultaneous saccharification and fermentation allow bioethanol production from pretreated spruce biomass at high solids loadings. Biotechnol Biofuels. 2014;7(1):54.
  • Modenbach AA, Nokes SE. Enzymatic hydrolysis of biomass at high-solids loadings-a review. Biomass Bioenerg. 2013;56:526–544.
  • Hoyer K, Galbe M, Zacchi G. The effect of prehydrolysis and improved mixing on high-solids batch simultaneous saccharification and fermentation of spruce to ethanol. Process Biochem. 2013;48(2):289–293.
  • Olofsson K, Bertilsson M, Lidén G. A short review on SSF-an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels. 2008;1(1):7.
  • Chilari D, Dimos K, Georgoula G, et al. Bioethanol production from alkali-treated cotton stalks at high solids loading applying non-isothermal simultaneous saccharification and fermentation. Waste Biomass Valor. 2017;8(6):1919–1929.
  • Sluiter A, Hames B, Ruiz R, et al. Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (Technical Report NREL/TP-510-42618). 2012. https://www.nrel.gov/docs/gen/fy13/42618.pdf
  • Shen J, Agblevor FA. Optimization of enzyme loading and hydrolytic time in the hydrolysis of mixtures of cotton gin waste and recycled paper sludge for the maximum profit rate. Biochem Eng J. 2008;41(3):241–250.
  • Zhang Y, Xu J-L, Xu H-J, et al. Cellulase deactivation based kinetic modeling of enzymatic hydrolysis of steam-exploded wheat straw. Bioresour Technol. 2010;101(21):8261–8266.
  • Zhao Y, Wang Y, Zhu JY, et al. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnol Bioeng. 2008;99(6):1320–1328.
  • Haque MA, Nath Barman D, Kang TH, et al. Effect of dilute alkali on structural features and enzymatic hydrolysis of barley straw (Hordeum vulgare) at boiling temperature with low residence time. J Microbiol Biotechnol. 2012;22(12):1681–1691.
  • Martínez PM, Bakker R, Harmsen P, et al. Importance of acid or alkali concentration on the removal of xylan and lignin for enzymatic cellulose hydrolysis. Ind Crop Prod. 2015;64:88–96.
  • Duque A, Manzanares P, Ballesteros I, et al. Study of process configuration and catalyst concentration in integrated alkaline extrusion of barley straw for bioethanol production. Fuel. 2014;134:448–454.
  • Han M, Kang KE, Kim Y, et al. High efficiency bioethanol production from barley straw using a continuous pretreatment reactor. Process Biochem. 2013;48(3):488–495.
  • Olsen SN, Lumby E, McFarland K, et al. Kinetics of enzymatic high-solid hydrolysis of lignocellulosic biomass studied by calorimetry. Appl Biochem Biotechnol. 2011;163(5):626–635.
  • Aliberti A, Ventorino V, Robertiello A, et al. Effect of cellulase, substrate concentrations, and configuration processes on cellulosic ethanol production from pretreated Arundo donax. BioRes. 2017;12:5321–5342.
  • Yoo CG, Nghiem NP, Hicks KB, et al. Maximum production of fermentable sugars from barley straw using optimized soaking in aqueous ammonia (SAA) pretreatment. Appl Biochem Biotechnol. 2013;169(8):2430–2441.
  • Ye Z, Berson RE. Kinetic modeling of cellulose hydrolysis with first order inactivation of adsorbed cellulose. Bioresour Technol. 2011;102(24):11194–11199.
  • Ruiz HA, Vicente AA, Teixeira JA. Kinetic modeling of enzymatic saccharification using wheat straw pretreated under autohydrolysis and organosolv process. Ind Crop Prod. 2012;36(1):100–107.
  • Ma T, Kosa M, Sun Q. Fermentation to bioethanol/biobutanol. In: Ragauskas A, editor. Materials for biofuels. World Scientific Printers; Singapore; 2014. p. 155–189.
  • Guerrero AB, Ballesteros I, Ballesteros M. The potential of agricultural banana waste for bioethanol production. Fuel. 2018;213:176–185.
  • Kristensen JB, Felby C, Jørgensen H. Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels. 2009;2(1):11.
  • Qin L, Zhao X, Li W-C, et al. Process analysis and optimization of simultaneous saccharification and co‑fermentation of ethylenediamine‑pretreated corn stover for ethanol production. Biotechnol Biofuels. 2018;11(1):118.
  • Lara-Serrano M, Angulo FS, Negro MJ, Morales-del Rosa S, et al. Second-generation bioethanol production combining simultaneous fermentation and saccharification of IL-pretreated barley straw. ACS Sustainable Chem Eng. 2018;6(5):7086–7095.
  • Linde M, Galbe M, Zacchi G. Simultaneous saccharification and fermentation of steam-pretreated barley straw at low enzyme loadings and low yeast concentration. Enzyme Microb Technol. 2007;40(5):1100–1107.
  • García-Aparicio M, Oliva JM, Manzanares P, et al. Second-generation ethanol production from steam exploded barley straw by Kluyveromyces marxianus CECT 10875. Fuel. 2011;90(4):1624–1640.
  • Vargas F, Domínguez E, Vila C, et al. Biorefinery scheme for residual biomass using autohydrolysis and organosolv stages for oligomers and bioethanol production. Energy Fuels. 2016;30(10):8236–8245.
  • Nghiem NP, Kim TH, Yoo CG, et al. Enzymatic fractionation of SAA-pretreated barley straw for production of fuel ethanol and astaxanthin as a value-added co-product. Appl Biochem Biotechnol. 2013;171(2):341–351.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.