230
Views
5
CrossRef citations to date
0
Altmetric
Articles

Evaluation of Chlorella sorokiniana cultivated in outdoor photobioreactors for biodiesel production

, , , & ORCID Icon
Pages 483-488 | Received 16 Jan 2020, Accepted 27 Apr 2020, Published online: 22 May 2020

References

  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.
  • Scott SA, Davey MP, Dennis JS, et al. Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol. 2010;21(3):277–286.
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev. 2010;14(1):217–232.
  • Savage PE, Hestekin JA. A perspective on algae, the environment, and energy. Environ Prog Sustainable Energy. 2013;32(4):877–883.
  • Li Y, Han F, Xu H, et al. Potential lipid accumulation and growth characteristic of the green alga Chlorella with combination cultivation mode of nitrogen (N) and phosphorus (P). Bioresour Technol. 2014;174:24–32.
  • Li T, Zheng Y, Yu L, et al. High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresour Technol. 2013;131:60–67.
  • Kobayashi N, Noel EA, Barnes A, et al. Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour Technol. 2013;150:377–386.
  • Costa JAV, Radmann EM, Cerqueira VS, et al. Perfil de ácidos graxos das microalgas Chlorella vulgaris e Chlorella minutissima cultivadas em diferentes condições. Alim Nutr. 2006;17:429–446.
  • Ahmad AL, Yasin NHM, Derek CJC, et al. Comparison of harvesting methods for microalgae Chlorella sp. and its potential use as a biodiesel feedstock. Environ Technol. 2014;35(17):2244–2253. [Internet].
  • Matos ÂP, Morioka LRI, Sant'Anna ES, et al. Protein and lipid contents from Chlorella sp. cultivated in residual concentrated desalination. Cienc Rural. 2015;45(2):364–370.
  • Abreu AP, Fernandes B, Vicente AA, et al. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour Technol. 2012;118:61–66.
  • Menegazzo ML, Gelinski J, Fonseca GG. Evaluation of methods of biomass recovery and lipid extraction for microalgae. In: Jeyabalan Sangeetha, Devarajan Thangadurai, Shivasharana C. Thimmappa, Sanyasi Elumalai, editors. Phycobiotechnology: biodiversity and biotechnology of algae and algal products for food, feed and fuel. Apple Academic Press, 1st ed. 2020
  • Ugwu CU, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae. Bioresour Technol. 2008;99(10):4021–4028. [Internet].
  • Guo X, Yao L, Huang Q. Aeration and mass transfer optimization in a rectangular airlift loop photobioreactor for the production of microalgae. Bioresour Technol. 2015;190:189–195.
  • Jacobi A, Ivanova D, Posten C. Photobioreactors: hydrodynamics and mass transfer. IFAC Proceedings Volumes. IFAC. 2010;43(6):162–167.
  • Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Proc Technol. 2005;86(10):1059–1070.
  • Payan A, Fattahi M, Roozbehani B. Synthesis, characterization and evaluations of TiO2 nanostructures prepared from different titania precursors for photocatalytic degradation of 4-chlorophenol in aqueous solution. J Environ Health Sci Engineer. 2018;16(1):41–54.
  • Fattahi M, Kazemeini M, Khorasheh F, et al. An investigation of the oxidative dehydrogenation of propane kinetics over a vanadium-graphene catalyst aiming at minimizing of the COx species. Chem Eng J. 2014;250:14–24.
  • Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, Jaramillo-Jacob A. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel. 2012;91(1):102–111.
  • Chen C-Y, Yeh K-L, Aisyah R, et al. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol. 2011;102(1):71–81.
  • Illman AM, Scragg AH, Shales SW. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enz Microb Technol. 2000;27(8):631–635.
  • Juntila DJ, Bautista MA, Monotilla W. Biomass and lipid production of a local isolate Chlorella sorokiniana under mixotrophic growth conditions. Bioresour Technol. 2015;191:395–398.
  • Ribeiro DM, Zanetti GT, Juliao MHM, et al. Effect of different culture media on growth of Chlorella sorokiniana and the influence of microalgal effluents on the germination of lettuce seeds. J Appl Biol Biotechnol. 2019;7:6–10.
  • Ji Y, Hu W, Li X, et al. Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with diluted monosodium glutamate wastewater. Bioresour Technol. 2014;152:471–476.
  • Chatsungnoen T, Chisti Y. Harvesting microalgae by flocculation–sedimentation. Algal Res. 2016;13:271–283.
  • König RB, Sales R, Roselet F, et al. Harvesting of the marine microalga Conticribra weissflogii (Bacillariophyceae) by cationic polymeric flocculants. Biomass Bioenergy. 2014;68:1–6.
  • Piorreck M, Pohl P. Formation of biomass, total protein, chlorophylls, lipids and fatty acids in green and blue-green algae during one growth phase. Phytochemistry. 1984;23(2):217–223.
  • Lee JY, Yoo C, Jun SY, et al. Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol. 2010;101(1):S75–S77.
  • Halim R, Danquah MK, Webley PA. Extraction of oil from microalgae for biodiesel production: A review. Biotechnol Adv. 2012;30(3):709–732.
  • Frumento D, Casazza AA, Al Arni S, et al. Cultivation of Chlorella vulgaris in tubular photobioreactors: A lipid source for biodiesel production. Biochem Eng J. 2013;81:120–125.
  • Islam MA, Magnusson M, Brown RJ, et al. Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles. Energies. 2013;6(11):5676–5702.
  • Breuer G, Evers WAC, de Vree JH, et al. Analysis of Fatty Acid Content and Composition in Microalgae. J Vis Exp. 2013;80:e50628.
  • Ryckebosch E, Muylaert K, Foubert I. Optimization of an analytical procedure for extraction of lipids from microalgae. JAOCS. J Am Oil Chem Soc. 2012;89(2):189–198.
  • Molina Grima E, Belarbi E-H, Acién Fernández FG, et al. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv. 2003;20(7-8):491–515.
  • Oncel SS. Microalgae for a macroenergy world. Renew Sustain Energy Rev. 2013;26:241–264.
  • Viêgas CV, Hachemi I, Freitas SP, et al. A route to produce renewable diesel from algae: synthesis and characterization of biodiesel via in situ transesterification of Chlorella alga and its catalytic deoxygenation to renewable diesel. Fuel. 2015;155:144–154.
  • Talebi AF, Mohtashami SK, Tabatabaei M, et al. Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Res. 2013;2(3):258–267.
  • Asgharpour M, Rodgers B, Hestekin JA. Eicosapentaenoic acid from Porphyridium cruentum: Increasing growth and productivity of microalgae for pharmaceutical products. Energies. 2015;8(9):10487–10503.
  • Ramos MJ, Fernández CM, Casas A, et al. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol. 2009;100(1):261–268.
  • Nascimento IA, Marques SSI, Cabanelas ITD, et al. Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenerg Res. 2013;6(1):1–13.
  • Knothe G. Analyzing biodiesel: Standards and other methods. J Amer Oil Chem Soc. 2006;83(10):823–833.
  • Barghi B, Fattahi M, Khorasheh F. The modeling of kinetics and catalyst deactivation in propane dehydrogenation over Pt-Sn/γ-Al2O3 in presence of water as an oxygenated additive. Pet Sci Technol. 2014;32(10):1139–1149.
  • Talebi AF, Tabatabaei M, Chisti Y. A user-friendly software for predicting the properties of prospective biodiesel. Biofuel Res J. 2014;2:55–57.
  • Salim S, Bosma R, Vermuë MH, et al. Harvesting of microalgae by bio-flocculation. J Appl Phycol. 2011;23(5):849–355.
  • Borges L, Caldas S, Montes D’Oca MG, et al. Effect of harvesting processes on the lipid yield and fatty acid profile of the marine microalga Nannochloropsis oculata. Aquac Reports. 2016;4:164–168.
  • AOAC. Official methods of analysis of the association of official analytical chemists. 18th ed. Arlington: AOAC International; 2005.
  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–917.
  • Liu J, Liu Y, Wang H, et al. Direct transesterification of fresh microalgal cells. Bioresour Technol. 2015;176:284–287.
  • Wahlen BD, Willis RM, Seefeldt LC. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol. 2011;102(3):2724–2730.
  • Ehimen EA, Sun ZF, Carrington CG. Variables affecting the in-situ transesterification of microalgae lipids. Fuel. 2010;89(3):677–684.
  • Fietz CR, Fisch GF. O clima da região de Dourados, MS, Documentos 92. Dourados: Embrapa Agropecuária Oeste; 2008. p. 1–32.
  • Breuer G, Lamers PP, Martens DE, et al. Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus. Bioresour Technol. 2013;143:1–9.
  • Viegas CV, Hachemi I, Mäki-Arvela P, et al. Algal products beyond lipids: Comprehensive characterization of different products in direct saponification of green alga Chlorella sp. Algal Res. 2015;11:156–164.
  • Li T, Zheng Y, Yu L, et al. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass Bioenergy. 2014;66:204–213.
  • Islam MA, Ayoko GA, Brown R, et al. Influence of fatty acid structure on fuel properties of algae derived biodiesel. Procedia Eng. 2013;56:591–596.
  • Wang L, Yu H, He X, et al. Influence of fatty acid composition of woody biodiesel plants on the fuel properties. J Fuel Chem Technol. 2012;40(4):397–404.
  • Menegazzo ML, Lucas BF, Alcade LB, et al. Production of biodiesel via methyl and ethyl routes from Nile tilapia and hybrid Sorubim crude oils. J Environ Chem Eng. 2015;3(1):150–154.
  • Knothe G. Fuel Properties of Highly Polyunsaturated Fatty Acid Methyl Esters. Prediction of Fuel Properties of. Energy Fuels. 2012;26(8):5265–5273.
  • Nautiyal P, Subramanian KA, Dastidar MG. Production and characterization of biodiesel from algae. Fuel Proc Technol. 2014;120:79–88.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.