429
Views
10
CrossRef citations to date
0
Altmetric
Articles

Transesterification of non-edible castor oil (Ricinus communis L.) from Mexico for biodiesel production: a physicochemical characterization

, , , &
Pages 753-762 | Received 15 Apr 2020, Accepted 21 Jun 2020, Published online: 02 Jul 2020

References

  • British Petroleum UK. BP. Statistical review of world energy. Report 2019 Web. London, UK; 2019. [cited 2020 May 07]. Available from: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf.
  • Eevera T, Rajendran K, Saradha S. Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions. Renewable Energy. 2009;34(3):762–765.
  • Hincapié G, Mondragón F, López D. Conventional and in situ transesterification of castor seed oil for biodiesel production. Fuel. 2011;90(4):1618–1623.
  • Deng YY, Koper M, Haigh M, et al. Country-level assessment of long-term global bioenergy potential. Biomass Bioenergy. 2015;74:253–267.
  • Riding MJ, Herbert BMJ, Ricketts L, et al. Harmonising conflicts between science, regulation, perception and environmental impact: the case of soil conditioners from bioenergy. Environ Int. 2015;75:52–67.
  • Song J, Yang W, Higano Y, et al. Modeling the development and utilization of bioenergy and exploring the environmental economic benefits. Energy Convers Manage. 2015;103:836–846.
  • Ramezani K, Rowshanzamir S, Eikani MH. Castor oil transesterification reaction: a kinetic study and optimization of parameters. Energy. 2010;35(10):4142–4148.
  • Scholz V, Nogueira da Silva J. Prospects and risks of the use of castor oil as a fuel. Biomass Bioenergy. 2008;32(2):95–100.
  • Singh D, Sharma D, Soni SL, et al. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel. 2020;262:116553–116563.
  • Atabani AE, Silitonga AS, Ong HC, et al. Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renewable Sustain Energy Rev. 2013;18:211–245.
  • João AF, Squissato AL, Ribeiro M, et al. Potential of Mafura seed oil as a feedstock for biodiesel production. Biofuels. 2020:1–7.
  • Meher LC, Sagar DV, Naik SN. Technical aspects of biodiesel production by transesterification-a review. Renewable Sustain Energy Rev. 2006;10(3):248–268.
  • Sharma YC, Singh B, Upadhyay SN. Advancements in development and characterization of biodiesel: a review. Fuel. 2008;87(12):2355–2373.
  • Dalvand P, Mahdavian L. Calculation of the properties of biodiesel production from castor seed by eggshell catalyst. Biofuels. 2018;9(6):705–710.
  • Armendáriz J, Lapuerta M, Zavala F, et al. Evaluation of eleven genotypes of castor oil plant (Ricinus communis L.) for the production of biodiesel. Ind Crop Prod. 2015;77:484–490.
  • Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). Potencial productivo de especies agrícolas de importancia socioeconómica en México. Consejo Mexicano para el Desarrollo Rural Sustentable Web. 2012. [cited 2019 Nov 11], Publicación Especial Núm. 8, Available from: https://www.cmdrs.gob.mx/sites/default/files/cmdrs/sesion/2018/09/17/1474/materiales/inifap-estudio.pdf.
  • Ugolini J. Biodiesel – Estudio para determinar la factibilidad técnica y económica del desarrollo del biodiesel. Biodiesel Uruguay Web. 2000. [cited 2019 Nov 20]. Available from: http://biodiesel-uruguay.com/articulos/biodiesel.pdf.
  • Instituto Nacional de Estadística y Geografía de México (INEGI). Tlaltenango de Sánchez Román. Espacio y Datos de México Web. 2017. [cited 2019 Nov 12]. Available from: http://www.beta.inegi.org.mx/app/mapa/espacioydatos/default.aspx?ag=320480001.
  • Instituto Nacional de Estadística y Geografía de México (INEGI). México en Cifras. México en Cifras Web. 2014. [cited 2019 Nov 15]. Available from: http://www.beta.inegi.org.mx/app/areasgeograficas/.
  • Secretaría de Agricultura G, Rural D. Pesca y Alimentación. Guía Técnica para la descripción varietal de Higuerilla (Ricinus communis L.). Servicio Nacional de Inspección y Certificación de Semillas Web. 2014. [cited 2019 Jun 10]. Available from: https://www.gob.mx/cms/uploads/attachment/file/120830/Higuerilla.pdf.
  • Barnes DJ, Baldwin BS, Braasch DA. Degradation of ricin in castor seed meal by temperature and chemical treatment. Ind Crop Prod. 2009;29(2-3):509–515.
  • Hernández C, Mieres P. Rendimiento de la extracción por prensado en frío y refinación física del aceite de la almendra del fruto de la palma corozo (Acrocomia aculeata). Confederación Interamericana de Ingeniería Química Web. 2005. [cited 2019 Jun 10]. Available from: http://www.ciiq.org/varios/peru_2005/Trabajos/IV/7/4.7.02.pdf.
  • Castro P, Coello J, Castillo L. Opciones para la producción y uso del biodiésel en el Perú. In: Soluciones Prácticas – ITDG. Lima, Perú; ASTM International (ASTM), 2007; pp. 91–124.
  • Sánchez IA, Huertas K. Obtención y caracterización de biodiesel a partir de aceite de semillas de Ricinus communis (Higuerilla) modificadas genéticamente y cultivadas en el Eje Cafetero. Repositorio Universidad Tecnológica de Pereira Web. 2012. [cited 2019 Jun 10]. Available from: http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/3048/6626S211.pdf;jsessionid=C3A74F7154B926B737F807A95549AE0B?sequence=1.
  • Martínez BB, Zamarripa A, Solís JL, et al. Calidad fisicoquímica de insumos bioenergéticos para la producción de biodiesel en México. In: Agrícolas y Pecuarias, editor. Instituto Nacional de Investigaciones Forestales. Ciudad de Coyoacán, México; ASTM International (ASTM); 2011; pp. 1–63.
  • Vivas AM. Estudio y obtención de biodiesel a partir de residuos grasos de origen bovino. Repositorio Universidad Tecnológica de Pereira Web. 2010. [cited 2019 Jun 20]. Available from: http://repositorio.utp.edu.co/dspace/handle/11059/2038?show=full.
  • American Society for Testing and Materials. ASTM D7042 “Standard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Kinematic Viscosity).” USA; 2016.
  • Federación DODL. NMX-F-211-SCFI-2012 Alimentos-aceites y grasas vegetales o animales- determinación de humedad y materia volátil por el método de placa caliente. México; 2012.
  • Federación DODL. NMX-F-154-SCFI-2010 Alimentos-aceites y grasas vegetales o animales- determinación del valor de peróxido. México; 2010.
  • Federación DODL. NMX-F-174-SCFI-2014 Alimentos-aceites y grasas vegetales o animales- determinación del índice de saponificación. México; 2014.
  • American Society for Testing and Materials. ASTM D974 Standard Test Method for Acid and Base Number by Color-Indicator Titration. USA; 2014.
  • Federación DODL. NMX-F-152-SCFI-2011 Alimentos-aceites y grasas vegetales o animales- determinación del índice de yodo por el método ciclohexano. México; 2011.
  • American Society for Testing and Materials. ASTM D130 Standard Test Method for Corrosiveness to Copper from Petroleum by Copper Strip Test. USA; 2012.
  • American Society for Testing and Materials. ASTM D2700 Standard Test Method for Motor Octane Number of Spark-Ignition Engine Fuel. USA; 2004.
  • American Society for Testing and Materials. ASTM D92 Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester. USA; 2005.
  • American Society for Testing and Materials. ASTM D93 Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester. USA; 2003.
  • American Society for Testing and Materials. ASTM D7683 Standard Test Method for Cloud Point of Petroleum Products (Small Test Jar Method). USA; 2014.
  • American Society for Testing and Materials. ASTM D6584 Standard Test Method for Determination of Total Monoglycerides. Total Diglycerides, Total Triglycerides, and Free and Total Glycerin in B-100 (Biodiesel Methyl Esters by Gas Chromatography). USA; 2000.
  • Akhabue CE, Okwundu OS. Monitoring the transesterification reaction of castor oil and methanol by ultraviolet visible spectroscopy. Biofuels. 2019;10(6):729–736.
  • Banković-Ilić IB, Stamenković OS, Veljković VB. Biodiesel production from non-edible plant oils. Renewable Sustain. Energy Rev. 2012;16(6):3621–3647.
  • Karmakar B, Dhawane SH, Halder G. Optimization of biodiesel production from castor oil by Taguchi design. J Environ Chem Eng. 2018;6(2):2684–2695.
  • Souza PPD, Motoike SY, Carvalho M, et al. Storage on the vigor and viability of macuba seeds from two provenances of Minas Gerais State. Cienc Rural. 2016;46(11):1932–1937.
  • Nie K, Xie F, Wang F, et al. Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. J Mol Catal B Enzym. 2006;43(1-4):142–147.
  • Velásquez JA, Lozada JR. Transesterificacion alcali-catalizada del aceite de Higuerilla. Rev Investig Apl. 2009;3:1–10.
  • Ustra MK, Silva JRF, Ansolin M, et al. Effect of temperature and composition on density, viscosity and thermal conductivity of fatty acid methyl esters from soybean, castor and Jatropha curcas oils. J Chem Thermodyn. 2013;58:460–466.
  • Kome GG. Re-esterification of high free fatty acid oils for biodiesel production. Biofuels. 2015;6:31–36.
  • Berman P, Nizri S, Wiesman ZP. Castor oil biodiesel and its blends as alternative fuel. Biomass Bioenergy. 2011;35(7):2861–2866.
  • Lavanya C, Murthy I, Nagaraj G, et al. Prospects of castor (Ricinus communis L.) genotypes for biodiesel production in India. Biomass Bioenergy. 2012;39:204–209.
  • Dias JM, Araújo JM, Costa JF, et al. Biodiesel production from raw castor oil. Energy. 2013;53:58–66.
  • Barajas CL. Biodiesel from castor oil: a promising fuel for cold weather. RE&PQJ. 2005;1:59–62.
  • Benavides A, Benjumea P, Pashova V. El biodiesel de aceite de higuerilla como combustible alternativo para motores diésel. Rev DYNA. 2007;74:141–150.
  • Yaakob Z, Narayanan BN, Padikkaparambil S, et al. A review on the oxidation stability of biodiesel. Renewable Sustain Energy Rev. 2014;35:136–153.
  • Kılıç M, Uzun BB, Pütün E, et al. Optimization of biodiesel production from castor oil using factorial design. Fuel Process Technol. 2013;111:105–110.
  • Danlami JM, Arsad A, Zaini M. Characterization and process optimization of castor oil (Ricinus communis L.) extracted by the soxhlet method using polar and non-polar solvents. J. Taiwan Inst Chem Eng. 2015;47:99–104.
  • Mallah TA, Sahito AR. Optimization of castor and neem biodiesel blends and development of empirical models to predicts its characteristics. Fuel. 2020;262:116341.
  • Montoya-Arbelaez JI. Modelamiento y simulación de la cinética de transesterificación del aceite de ricino con alcohol etílico, catalizada con NaOH. Tesis de grado. Bogotá, Colombia; 2009.
  • Singh B, Shukla SK. Experimental analysis of combustion characteristics on a variable compression ratio engine fuelled with biodiesel (castor oil) and diesel blends. Biofuels. 2016;7(5):471–477.
  • Williams JB. Production of biodiesel in Europe- the markets. Eur J Lipid Sci Technol. 2002;104(6):361–362.
  • Moser BR. Biodiesel production, properties and feedstocks. In Vitro Celldevbiol-Plant. 2009;45(3):229–266.
  • Sierra-Cantor JF, Guerrero-Fajardo CA. Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: a review. Renewable Sustain Energy Rev. 2017;72:774–790.
  • Musa IA. The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egypt J Pet. 2016;25(1):21–31.
  • Vargas-Ibáñez LT, Iglesias-Silva GA, Cano-Gómez JJ, et al. Densities and viscosities for binary liquid mixtures of biodiesel + 1-pentanol, 2-pentanol, or 2-methyl-1-butanol from (288.15 to 338.15) K at 0.1 MPa. J Chem Eng Data. 2018;63(7):2438–2450.
  • Alleman TL, McCormick RL. Biodiesel Handling and Use Guide. Alternative Fuels Data Center - Department of Energy Web. 2016. [cited 2019 01 Dec 01]. Available from: https://afdc.energy.gov/files/u/publication/biodiesel_handling_use_guide.pdf..
  • He BB, Thompson JC, Routt DW, et al. Moisture absorption in biodiesel and its petro-diesel blends. Appl. Eng. Agric. 2007;23:71–76.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.