296
Views
5
CrossRef citations to date
0
Altmetric
Articles

Two-step fermentation of cooked rice with Aspergillus oryzae and Clostridium acetobutylicum YM1 for biobutanol production

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 579-585 | Received 10 Jun 2020, Accepted 16 Aug 2020, Published online: 15 Sep 2020

References

  • FAO 2011. Global food losses and food waste – Extent, causes and prevention. http://www.fao.org/3/a-i2697e.pdf. Accessed 10 April 2020
  • FAO 2013. Food wastage footprint- impacts on natural resources. http://www.fao.org/3/i3347e/i3347e.pdf. Accessed 10 April 2020
  • Takata M, Fukushima K, Kino-Kimata N, et al. The effects of recycling loops in food waste management in Japan: Based on the environmental and economic evaluation of food recycling. Sci Total Environ. 2012;432:309–317.
  • Algayyim SJM, Wandel AP. Performance and emission levels of butanol, acetone-butanol-ethanol, butanol-acetone/diesel blends in a diesel engine. Biofuels. 2020;1–11. DOI: https://doi.org/10.1080/17597269.2020.1759178
  • Salehi Jouzani G, Taherzadeh MJ. Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Res J. 2015;2(1):152–195.
  • Khedkar MA, Nimbalkar PR, Gaikwad SG, et al. Sustainable biobutanol production from pineapple waste by using Clostridium acetobutylicum B 527: Drying kinetics study. Bioresour Technol. 2017;225:359–366.
  • Al-Shorgani NKN, Al-Tabib AI, Kadier A, et al. Continuous butanol fermentation of dilute acid-pretreated de-oiled rice bran by Clostridium acetobutylicum YM1. Sci Rep. 2019;9(1):1–13.
  • Neethu A, Murugan A. Bioconversion of sago effluent and oil cakes for bio-butanol production using environmental isolates. Biofuels. 2018:1–8. Doi: https://doi.org/10.1080/17597269.2018.1446576
  • Johnravindar D, Elangovan N, Gopal NO, et al. Biobutanol production from cassava waste residue using Clostridium sp. AS3 in batch culture fermentation. Biofuels. 2019:1–8. Doi: https://doi.org/10.1080/17597269.2019.1608671
  • Nimbalkar PR, Khedkar MA, Kulkarni RK, et al. Strategic intensification in butanol production by exogenous amino acid supplementation: Fermentation kinetics and thermodynamic studies. Bioresour Technol. 2019;288:121521.
  • Bankar SB, Nimbalkar PR, Khedkar MA, et al. Biobutanol: Research Breakthrough for its Commercial Interest. In: Liquid Biofuel Production. Hoboken (NJ): John Wiley & Sons; 2019. p. 237–283.
  • Mohtasebi B, Maki M, Qin W, et al. Novel fusants of two and three clostridia for enhanced green production of biobutanol. Biofuels. 2019:1–11. DOI: https://doi.org/10.1080/17597269.2019.1573605
  • Abo BO, Gao M, Wang Y, et al. Production of butanol from biomass: recent advances and future prospects. Environ Sci Pollut Res Int. 2019;26(20):20164–20119.
  • Al-Shorgani NKN, Kalil MS, Yusoff WMW, et al. Improvement of the butanol production selectivity and butanol to acetone ratio (B:A) by addition of electron carriers in the batch culture of a new local isolate of Clostridium acetobutylicum YM1. Anaerobe. 2015;36:65–72.
  • Han W, Fang J, Liu Z, et al. Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste. Bioresour Technol. 2016;202:107–112.
  • Kumar M, Goyal Y, Sarkar A, et al. Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks. Appl Energy. 2012;93:193–204.
  • Mahapatra MK, Kumar A. A short review on biobutanol, a second generation biofuel production from lignocellulosic biomass. JOCET. 2017;5(1):27–30,
  • Tran HTM, Cheirsilp B, Hodgson B, et al. Potential use of Bacillus subtilis in a co-culture with Clostridium butylicum for acetone–butanol–ethanol production from cassava starch. Biochem Eng J. 2010;48(2):260–267.
  • Zambare V. Solid state fermentation of Aspergillus oryzae for glucoamylase production on agro residues. Int J Life Sci. 2010;4:16–25.
  • Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426–428.
  • Al-Shorgani NKN, Shukor H, Abdeshahian P, et al. Enhanced butanol production by optimization of medium parameters using Clostridium acetobutylicum YM1. Saudi J Biol Sci. 2018;25(7):1308–1321.
  • Amiri H, Karimi K, Zilouei H. Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresour Technol. 2014;152:450–456.
  • Couto SR, Sanromán MA. Application of solid-state fermentation to food industry—a review. J Food Eng. 2006;76(3):291–302.
  • Syahariza ZA, Sar S, Hasjim J, et al. The importance of amylose and amylopectin fine structures for starch digestibility in cooked rice grains. Food Chem. 2013;136(2):742–749.
  • Kunamneni A, Permaul K, Singh S. Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus. J Biosci Bioeng. 2005;100(2):168–171.
  • Deepa G, Singh V, Naidu KA. A comparative study on starch digestibility, glycemic index and resistant starch of pigmented ('Njavara' and 'Jyothi') and a non-pigmented ('IR 64') rice varieties. J Food Sci Technol. 2010;47(6):644–649.
  • Chen BY, Chuang FY, Lin CL, et al. Deciphering butanol inhibition to Clostridial species in acclimatized sludge for improving biobutanol production. Biochem Eng J. 2012;69:100–105.
  • Razak MNA, Ibrahim MF, Yee PL, et al. Statistical optimization of biobutanol production from oil palm decanter cake hydrolysate by Clostridium acetobutylicum ATCC 824. BioResources. 2013;8(2):1758–1770.
  • Chen WH, Chen YC, Lin JG. Evaluation of biobutanol production from non-pretreated rice straw hydrolysate under non-sterile environmental conditions. Bioresour Technol. 2013;135:262–268.
  • Yoo M, Nguyen N-P-T, Soucaille P. Trends in systems biology for the analysis and engineering of Clostridium acetobutylicum metabolism. Trends Microbiol. 2020;28(2):118–140.
  • Li H, Xiong L, Chen X, et al. Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment. Bioresour Technol. 2017;228:257–263.
  • Li X, Shi Z, Li Z. Increasing butanol/acetone ratio and solvent productivity in ABE fermentation by consecutively feeding butyrate to weaken metabolic strength of butyrate loop. Bioprocess Biosyst Eng. 2014;37(8):1609–1616.
  • Moradi F, Amiri H, Soleimanian-Zad S, et al. Improvement of acetone, butanol and ethanol production from rice straw by acid and alkaline pretreatments. Fuel. 2013;112:8–13.
  • Mirfakhar M, Asadollahi MA, Amiri H, et al. Co-fermentation of hemicellulosic hydrolysates and starch from sweet sorghum by Clostridium acetobutylicum: A synergistic effect for butanol production. Ind Crops Prod. 2020;151:112459.
  • Sanitha M, Fathima AA, Tolonen AC, et al. Engineering Clostridium acetobutylicum to utilize cellulose by heterologous expression of a family 5 cellulase. Biofuels. 2020:1–6.DOI: https://doi.org/10.1080/17597269.2020.1746123
  • Ezeji TC, Qureshi N, Blaschek HP. Production of acetone butanol (AB) from liquefied corn starch, a commercial substrate, using Clostridium beijerinckii coupled with product recovery by gas stripping. J Ind Microbiol Biotechnol. 2007;34(12):771–777.
  • Niglio S, Marzocchella A, Rehmann L. Clostridial conversion of corn syrup to Acetone-Butanol-Ethanol (ABE) via batch and fed-batch fermentation. Heliyon. 2019;5(3):e01401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.