8,989
Views
27
CrossRef citations to date
0
Altmetric
Articles

Biogas-based fuels as renewable energy in the transport sector: an overview of the potential of using CBG, LBG and other vehicle fuels produced from biogas

ORCID Icon
Pages 587-599 | Received 07 May 2020, Accepted 05 Sep 2020, Published online: 24 Sep 2020

References

  • International Energy Agency. Key world energy statistics 2019. 2019.
  • Eurostat. Renewable energy statistics [Internet]. 2020. Available from: https://ec.europa.eu/eurostat/statistics-explained/index.php/Renewable_energy_statistics.
  • Frøseth RB, Bakken AK, Bleken MA, et al. Effects of green manure herbage management and its digestate from biogas production on barley yield, N recovery, soil structure and earthworm populations. Eur J Agron. 2014;52:90–102.
  • Odlare M, Arthurson V, Pell M, et al. Land application of organic waste – effects on the soil ecosystem. Appl Energy. 2011;88(6):2210–2218.
  • Kaspersen BS, Christensen TB, Fredenslund AM, et al. Linking climate change mitigation and coastal eutrophication management through biogas technology: evidence from a new Danish bioenergy concept. Sci Total Environ. 2016;541:1124–1131.
  • Lošák T, Hlušek J, Bělíková H, et al. What is more suitable for kohlrabi fertilization – digestate or mineral fertilizers. Acta Univ Agric Silvic Mendelianae Brun. 2015;63(3):787–791.
  • Kummamuru B. WBA Global bioenergy statistics 2017. World Bioenergy Association 2017.
  • World Bioenergy Association. Biogas – an important renewable energy source. 2013. Stockholm, Sweden.
  • Ahmadi ME, Ahlgren S, Hulteberg C, et al. Energy balance and global warming potential of biogas-based fuels from a life cycle perspective. Fuel Process. Technol. 2015;132:74–82.
  • DaSilva EJ. Biogas: fuel of the future?. Ambio. 1980;9(1):2–9.
  • Hibler M. Biogas: a solution to many problems. IDRC Report, Canada. 1978.
  • Khan MI, Yasmin T, Shakoor A. Technical overview of compressed natural gas (CNG) as a transportation fuel. Renew Sustain Energy Rev. 2015;51:785–797.
  • Sathaye J, Atkinson B, Meyers S. Alternative fuels assessment: the international experience. Lawrence Berkeley Laboratory, University of California, Berkeley, California,1988.
  • Yeh S. An empirical analysis on the adoption of alternative fuel vehicles: the case of natural gas vehicles. Energy Policy. 2007;35(11):5865–5875.
  • Anderson LG. Effects of using renewable fuels on vehicle emissions. Renew Sustain Energy Rev. 2015;47:162–172.
  • Angelidaki I, Treu L, Tsapekos P, et al. Biogas upgrading and utilization: current status and perspectives. Biotechnol Adv. 2018;36(2):452–466.
  • Yang L, Ge X, Wan C, et al. Progress and perspectives in converting biogas to transportation fuels. Renew Sustain Energy Rev. 2014;40:1133–1152.
  • Swedish Energy Agency. Produktion och användning av biogas och rötrester år 2018 [Production and use of biogas and digestate 2018]. 2019.
  • Gustafsson M, Ammenberg J, Murphy JD. Country Reports Summaries. 2019. IEA Bioenergy.
  • Gasum. Gasum Corporate Responsibility 2018. 2018.
  • Scandinavian Biogas. Årsredovisning 2019 [Annual report 2019]. 2020.
  • Rosén T, Ödlund L. System perspective on biogas use for transport and electricity production. Energies. 2019;12(21):4159.
  • Ajanovic A, Haas R. Economic and environmental prospects for battery electric‐ and fuel cell vehicles: a review. Fuel Cells. 2019;19(5):515–529.
  • Gustafsson M, Cruz I, Svensson N, et al. Scenarios for upgrading and distribution of compressed and liquefied biogas — energy, environmental, and economic analysis. J Clean Prod. 2020;256:120473.
  • Zinoviev S, Müller-Langer F, Das P, et al. Next-generation biofuels: survey of emerging technologies and sustainability issues. ChemSusChem. 2010;3(10):1106–1133.
  • Semelsberger TA, Borup RL, Greene HL. Dimethyl ether (DME) as an alternative fuel. J Power Sourc. 2006;156(2):497–511.
  • MacLean HL, Lave LB. Evaluating automobile fuel/propulsion system technologies. Prog Energy Combust Sci. 2003;69: 1-69.
  • Fallde M, Eklund M. Towards a sustainable socio-technical system of biogas for transport: the case of the city of Linköping in Sweden. J Clean Prod. 2015;98:17–28.
  • Tyner WE, Adams J. Rural Electrification in India: biogas versus Large-Scale Power. Asian Surv. 1977;17(8):724–734.
  • Pankhurst ES. The prospects for biogas—a European point of view. Biomass. 1983;3(1):1–42.
  • McLeod RJ. Biogas as a fuel for spark ignition engines. Second National Conference on Fuels from Crops, Melbourne, August 1983. 1983.
  • Bucksch S, Egebäck K-E. The Swedish program for investigations concerning biofuels. Sci Total Environ. 1999;235(1-3):293–303.
  • Jawurek HH, Lane NW, Rallis CJ. Biogas/petrol dual fuelling of si engine for rural third world use. Biomass. 1987;13(2):87–103.
  • Cheng-Qiu J, Tian-Wei L, Jian-Li Z. A study on compressed biogas and its application to the compressed ignition dual-fuel engine. Biomass. 1989;20(1-2):53–59.
  • Kuwahara N, Berni MD, Bajay SV. Energy supply from municipal wastes: the potential of biogas-fuelled buses in Brazil. Renew Energy. 1999;16(1-4):1000–1003.
  • Ullah Khan I, Hafiz Dzarfan Othman M, Hashim H, et al. Biogas as a renewable energy fuel – a review of biogas upgrading, utilisation and storage. Energy Convers Manag. 2017;150:277–294.
  • Xia A, Cheng J, Murphy JD. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel. Biotechnol Adv. 2016;34(5):451–472.
  • Yousef AMI, Eldrainy YA, El-Maghlany WM, et al. Upgrading biogas by a low-temperature CO2 removal technique. Alex Eng J. 2016;55(2):1143–1150.
  • Lim C, Kim D, Song C, et al. Performance and emission characteristics of a vehicle fueled with enriched biogas and natural gases. Appl Energy. 2015;139:17–29.
  • Fierro J, Gómez X, Murphy JD. What is the resource of second generation gaseous transport biofuels based on pig slurries in Spain? Appl Energy. 2014;114:783–789.
  • Patrizio P, Leduc S, Chinese D, et al. Biomethane as transport fuel – a comparison with other biogas utilization pathways in northern Italy. Appl Energy. 2015;157:25–34.
  • Collet P, Flottes E, Favre A, et al. Techno-economic and life cycle assessment of methane production via biogas upgrading and power to gas technology. Appl Energy. 2017;192:282–295.
  • Götz M, Lefebvre J, Mörs F, et al. Renewable power-to-gas: a technological and economic review. Renew Energy. 2016;85:1371–1390.
  • Parra D, Zhang X, Bauer C, et al. An integrated techno-economic and life cycle environmental assessment of power-to-gas systems. Appl Energy. 2017;193:440–454.
  • Global NGV. Current natural gas vehicle statistics [Internet]. 2019. Available from: http://www.iangv.org/current-ngv-stats/.
  • Fordonsgas. Gasfordon [Gas vehicles] [Internet]. 2020. Available from: https://fordonsgas.se/gasfordon/.
  • Hagos DA, Ahlgren E, A. state-of-the art review on the development of CNG/LNG infrastructure and natural gas vehicles (NGVs). FutureGas project - WP3 Gas for transport 2018.
  • Smajla I, Karasalihović Sedlar D, Drljača B, et al. Fuel switch to LNG in heavy truck traffic. Energies. 2019;12(3):515.
  • Anderhofstadt B, Spinler S. Preferences for autonomous and alternative fuel-powered heavy-duty trucks in Germany. Transp Res Part Transp Environ. 2020;79:102232.
  • Danish Energy Agency. Perspektiver for produktion og anvendelse af biogas i Danmark [Perspectives for the production and use of biogas in Denmark]. 2018, Copenhagen, Denmark.
  • Theobald O. Country Report France. French Agency for Environment and Energy Management, for IEA Bioenergy Task 37 2015.
  • Association Technique Energie Environment. Statistiques filière biogaz – Juillet 2018 [Statistics biogas sector – July 2018]. 2018, Arcueil, France.
  • Huttunen MJ, Kuittinen V, Lampinen A. Suomen biokaasulaitosrekisteri NO 21 [Finish Biogas Register No. 21]. University of Eastern Finland 2017, Joensuu, Finland.
  • Bachmann N. Swiss country report. IEA Bioenergy 2013, Lausanne, Switzerland.
  • Baier U, Buchs M, Hermle S. Switzerland – 2018 update. Bioenergy policies and status of implementation. IEA Bioenergy 2018.
  • Bosma P, Nagelvoort RK. Liquefaction technology; developments through history. In: Proceedings of the 1st Annual Gas Processing Symposium, Doha, Qatar 2009.
  • Hashemi SE, Sarker S, Lien KM, et al. Cryogenic vs. absorption biogas upgrading in liquefied biomethane production - An energy efficiency analysis. Fuel. 2019;245:294–304.
  • Pellegrini LA, De Guido G, Langé S. Biogas to liquefied biomethane via cryogenic upgrading technologies. Renew Energy. 2018;124:75–83.
  • Spitoni M, Pierantozzi M, Comodi G, et al. Theoretical evaluation and optimization of a cryogenic technology for carbon dioxide separation and methane liquefaction from biogas. J Nat Gas Sci Eng. 2019;62:132–143.
  • Arteconi A, Spitoni M, Polonara F, et al. The feasibility of liquefied biomethane as alternative fuel: a comparison between European and Chinese markets. Int J Ambient Energy. 2017;38:481–488.
  • Shanmugam K, Tysklind M, Upadhyayula VKK. Use of liquefied biomethane (LBM) as a vehicle fuel for road freight transportation: a case study evaluating environmental performance of using LBM for operation of tractor trailers. In: Procedia CIRP. 2018;69:517–522. ).
  • Bengtsson S, Fridell E, Andersson K. Environmental assessment of two pathways towards the use of biofuels in shipping. Energy Policy. 2012;44:451–463.
  • Brynolf S, Fridell E, Andersson K. Environmental assessment of marine fuels: liquefied natural gas, liquefied biogas and bio-methanol. J Clean Prod. 2014;74:86–95.
  • Kanbur BB, Xiang L, Dubey S, et al. Cold utilization systems of LNG: a review. Renew Sustain Energy Rev. 2017;79:1171–1188.
  • Mehrpooya M, Moftakhari Sharifzadeh MM, Rosen MA. Energy and exergy analyses of a novel power cycle using the cold of LNG (liquefied natural gas) and low-temperature solar energy. Energy. 2016;95:324–345.
  • Mehrpooya M, Moftakhari Sharifzadeh MM, Rosen MA. Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization. Energy. 2015;90:2047–2069.
  • Romero Gómez M, Ferreiro Garcia R, Romero Gómez J, et al. Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process. Renew Sustain Energy Rev. 2014;38:781–795.
  • Zhang G, Dou L, Xu Y. Opportunities and challenges of natural gas development and utilization in China. Clean Techn Environ Policy. 2019;21(6):1193–1211.
  • Persson T, Svensson M, Swedish Gas Technology Centre. Non-grid biomethane transportation in Sweden and the development of the liquefied biogas market. 2014, David Baxter (Ed), IEA, Paris, France.
  • Dongfeng Motor Corporation. DONGFENG DFH4250A2 LNG Tractor truck [Internet]. 2020. Available from: https://www.dfm-global.com//pd.jsp?id=3.
  • NGVA Europe. Statistical Report 2017. 2017, Brussels, Belgium.
  • Schinas O, Butler M. Feasibility and commercial considerations of LNG-fueled ships. Ocean Eng. 2016;122:84–96.
  • Dnv GL. Full list of LNG vessels in operation and on order (as of March 2016). 2016, Oslo, Norway.
  • Sweco LM, Wallmark C. Scenarier för gasanvändning i transportsektorn till 2030 [Scenarios for gas use in the transport sector until 2030]. 2016, Swedish Gas Association, Stockholm, Sweden.
  • Energikontor Sydost [Energy Agency for Southeast Sweden]. Flytande biogas till land och till sjöss [Liquefied biogas at land and at sea]. 2017.
  • Verken T. Årsredovisning 2019 [Annual Report 2019]. 2020, Tekniska Verken: Linköping, Sweden.
  • Wärtsilä. Wärtsilä etablerer CO2-reduserende anlegg for flytende biogass i Asker [Wärtsilä establishes a CO2-reducing plant for liquefied biogas in Asker] [Internet]. 2019. Available from: https://www.wartsila.com/nor/media/nyhet/13-03-2019-w%C3%A4rtsil%C3%A4-etablerer-co2-reduserende-anlegg-for-flytende-biogass-i-asker.
  • Cryo Pur. Deux ans d’exploitation pour l’unité Cryo Pur chez Greenville Energy [Two years of operation for the Cryo Pur plant at Greenville Energy] [Internet]. 2020. Available from: http://www.cryopur.com/actualites/deux-ans-dexploitation-greenville/.
  • Rolande. BIOLNG4EU [Internet]. Rolande 2020. Available from: https://rolande.nl/biolng4eu/.
  • Andújar JM, Segura F. Fuel cells: history and updating. A walk along two centuries. Renew Sustain Energy Rev. 2009;13(9):2309–2322.
  • Bockris JOM. The hydrogen economy: its history. Int J Hydrog Energy. 2013;38(6):2579–2588.
  • Häfele W. Second Status Report of the IIASA Project on Energy Systems. International Institute for Applied Systems Analysis. 1976. Laxenburg, Austria.
  • Alves HJ, Bley Junior C, Niklevicz RR, et al. Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int J Hydrog Energy. 2013;38(13):5215–5225.
  • Bereketidou OA, Goula MA. Biogas reforming for syngas production over nickel supported on ceria–alumina catalysts. Catal Today. 2012;195(1):93–100.
  • Chun YN, Yang YC, Yoshikawa K. Hydrogen generation from biogas reforming using a gliding arc plasma-catalyst reformer. Catal Today. 2009;148(3-4):283–289.
  • Lau CS, Tsolakis A, Wyszynski ML. Biogas upgrade to syn-gas (H2–CO) via dry and oxidative reforming. Int J Hydrog Energy. 2011;36(1):397–404.
  • Xu J, Zhou W, Li Z, et al. Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. Int J Hydrog Energy. 2009;34(16):6646–6654.
  • Nahar G, Mote D, Dupont V. Hydrogen production from reforming of biogas: review of technological advances and an Indian perspective. Renew Sustain Energy Rev. 2017;76:1032–1052.
  • Gao Y, Jiang J, Meng Y, et al. A review of recent developments in hydrogen production via biogas dry reforming. Energy Convers Manag. 2018;171:133–155.
  • Luo J, Im J-H, Mayer MT, et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science. 2014;345(6204):1593–1596.
  • Paracchino A, Laporte V, Sivula K, et al. Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater. 2011;10(6):456–461.
  • Reece SY, Hamel JA, Sung K, et al. Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts. Science. 2011;334(6056):645–648.
  • Roger I, Shipman MA, Symes MD. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem. 2017;1(1):0003.
  • Debe MK. Electrocatalyst approaches and challenges for automotive fuel cells. Nature. 2012;486(7401):43–51.
  • Wang Y, Chen KS, Mishler J, et al. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl Energy. 2011;88(4):981–1007.
  • Cano ZP, Banham D, Ye S, et al. Batteries and fuel cells for emerging electric vehicle markets. Nat Energy. 2018;3(4):279–289.
  • Eberle U, Felderhoff M, Schüth F. Chemical and physical solutions for hydrogen storage. Angew Chem Int Ed Engl. 2009;48(36):6608–6630.
  • Murray LJ, Dincă M, Long JR. Hydrogen storage in metal-organic frameworks. Chem Soc Rev. 2009;38(5):1294–1314.
  • Yu X, Tang Z, Sun D, et al. Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog Mater Sci. 2017;88:1–48.
  • Gis W, Menes M. The Development of the World Fleet of Electric Vehicles in Years 2010–2017 with Emphasis on Fuel-Cell Vehicles. J Kones. 2019;26(4):63–68.
  • Shin J, Hwang W-S, Choi H. Can hydrogen fuel vehicles be a sustainable alternative on vehicle market?: Comparison of electric and hydrogen fuel cell vehicles. Technol Forecast Soc Change. 2019;143:239–248.
  • Thomas JM, Edwards PP, Dobson PJ, et al. Decarbonising energy: the developing international activity in hydrogen technologies and fuel cells. J Energy Chem. 2020;51:405–415.
  • Ulleberg Ø, Meyer J, Eriksen J, et al. Hynor Lillestrøm – A Renewable Hydrogen Station & Technology Test Center. 2014;8
  • Metacon. Metacon AB tecknar avtal med Hynion AS om uthyrning av en 40 Nm3 vätgasreformer [Metacon AB signs an agreement with Hynion AS for rental of a 40 Nm3 hydrogen generation unit] [Internet]. Metacon 2020. Available from: https://metacon.se/sv/metacon-ab-tecknar-avtal-med-hynion-as-om-uthyrning-av-en-40-nm3-vatgasreformer/.
  • FuelCellsWorks. South Korean Govt to Invest US$8.4 million in the Installation of Hydrogen Stations Using Biogas [Internet]. FuelCellsWorks 2019. Available from: https://fuelcellsworks.com/news/south-korean-govt-to-invest-us8-4-million-in-the-installation-of-hydrogen-stations-using-biogas/.
  • Mårald E. Methanol as future fuel: efforts to develop alternative fuels in Sweden after the Oil Crisis. Hist Technol. 2010;26(4):335–357.
  • Verhelst S, Turner JW, Sileghem L, et al. Methanol as a fuel for internal combustion engines. Prog Energy Combust Sci. 2019;70:43–88.
  • Ghosh S, Uday V, Giri A, et al. Biogas to methanol: a comparison of conversion processes involving direct carbon dioxide hydrogenation and via reverse water gas shift reaction. J Clean Prod. 2019;217:615–626.
  • Kondaveeti S, Patel SKS, Pagolu R, et al. Conversion of simulated biogas to electricity: sequential operation of methanotrophic reactor effluents in microbial fuel cell. Energy. 2019;189:116309.
  • Rivarolo M, Bellotti D, Magistri L, et al. Feasibility study of methanol production from different renewable sources and thermo-economic analysis. Int J Hydrog Energy. 2016;41(4):2105–2116.
  • Sheets JP, Lawson K, Ge X, et al. Development and evaluation of a trickle bed bioreactor for enhanced mass transfer and methanol production from biogas. Biochem Eng J. 2017;122:103–114.
  • Usman M, Daud WMAW. Recent advances in the methanol synthesis via methane reforming processes. RSC Adv. 2015;5(28):21945–21972.
  • Vita A, Italiano C, Previtali D, et al. Methanol synthesis from biogas: a thermodynamic analysis. Renew Energy. 2018;118:673–684.
  • Svanberg M, Ellis J, Lundgren J, et al. Renewable methanol as a fuel for the shipping industry. Renew Sustain Energy Rev. 2018;94:1217–1228.
  • Bongartz D, Doré L, Eichler K, et al. Comparison of light-duty transportation fuels produced from renewable hydrogen and green carbon dioxide. Appl Energy. 2018;231:757–767.
  • Sehatpour M-H, Kazemi A, Sehatpour H. Evaluation of alternative fuels for light-duty vehicles in Iran using a multi-criteria approach. Renew Sustain Energy Rev. 2017;72:295–310.
  • Kreuer KD. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci. 2001;185(1):29–39.
  • Liu H, Song C, Zhang L, et al. A review of anode catalysis in the direct methanol fuel cell. J Power Sourc. 2006;155(2):95–110.
  • Zhao X, Yin M, Ma L, et al. Recent advances in catalysts for direct methanol fuel cells. Energy Environ Sci. 2011;4(8):2736.
  • Hobson C. Renewable Methanol Report. Methanol Institute, Washington, D.C, 2018.
  • Stančin H, Mikulčić H, Wang X, et al. A review on alternative fuels in future energy system. Renew Sustain Energy Rev. 2020;128:109927.
  • First methanol filling station opens to serve range-extender cars. Fuel Cells Bull. 2015;2015(9):7–8.
  • European Parliament and the Council of the European Union. Directive 2009. /30/EC.
  • Dierickx J, Beyen J, Block R, et al. Strategies for introducing methanol as an alternative fuel for shipping. In: Proceedings of 7th Transport Research Arena TRA 2018, April 16-19, 2018., Vienna, Austria 2018.
  • Olah GA, Goeppert A, Prakash GKS. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem. 2009;74(2):487–498.
  • Previtali D, Vita A, Bassani A, et al. Methanol synthesis: a distributed production concept based on biogas plants. Chem Eng Trans. 2018;65:409–414.
  • Zuo H, Mao D, Guo X, et al. Highly efficient synthesis of dimethyl ether directly from biomass-derived gas over Li-modified Cu-ZnO-Al2O3/HZSM-5 hybrid catalyst. Renew Energy. 2018;116:38–47.
  • Kim MY, Yoon SH, Ryu BW, et al. Combustion and emission characteristics of DME as an alternative fuel for compression ignition engines with a high pressure injection system. Fuel. 2008;87(12):2779–2786.
  • Park SH, Lee CS. Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel. Energy Convers Manag. 2014;86:848–863.
  • Park SH, Lee CS. Combustion performance and emission reduction characteristics of automotive DME engine system. Prog Energy Combust Sci. 2013;39(1):147–168.
  • Wu M, Wu Y, Wang M. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment. Biotechnol Prog. 2006;22(4):1012–1024.
  • Fleisch TH, Basu A, Sills RA. Introduction and advancement of a new clean global fuel: the status of DME developments in China and beyond. J Nat Gas Sci Eng. 2012;9:94–107.
  • Shah YT. Chemical energy from natural and synthetic gas. CRC Press, Taylor & Francis Group, Boca Raton, Florida, 2017.
  • Hellsmark H, Frishammar J, Söderholm P, et al. The role of pilot and demonstration plants in technology development and innovation policy. Res Policy. 2016;45(9):1743–1761.
  • Volvo Group. Interview about alternative fuels at Volvo. 2017.
  • Pulidini K, Pandey H. Bio-based and Synthetic Dimethyl Ether (DME) Market Size By Raw Material (Fossil Fuel Based, Bio-based), By Application (LPG Blending, Aerosol Propellants, Transportation Fuel, Industrial), Industry Analysis Report, Regional Outlook, Growth Potential, Price Trends, Competitive Market Share & Forecast, 2019 – 2025. Global Market Insights. 2019, pages: 202;
  • Mossberg J, Söderholm P, Hellsmark H, et al. Crossing the biorefinery valley of death? Actor roles and networks in overcoming barriers to a sustainability transition. Environ Innov Soc Transit. 2018;27:83–101.
  • Franz F, Hans T. Process for the production of paraffin-hydrocarbons with more than one carbon atom. 1930.
  • Steynberg AP. Introduction to Fischer-Tropsch technology. In: Studies in surface science and catalysis, Elsevier. 2004;152: 1–63.
  • Schulz H. Short history and present trends of Fischer–Tropsch synthesis. Appl. Catal. Gen. 1999;186(1/2):3–12.
  • Chen W, Fan Z, Pan X, et al. Effect of Confinement in Carbon Nanotubes on the Activity of Fischer-Tropsch iron catalyst . J Am Chem Soc. 2008;130(29):9414–9419.
  • Zhang Q, Cheng K, Kang J, et al. Fischer-Tropsch Catalysts for the Production of Hydrocarbon Fuels with High Selectivity. ChemSusChem. 2014;7(5):1251–1264.
  • Zhang Q, Kang J, Wang Y. Development of Novel Catalysts for Fischer-Tropsch Synthesis: Tuning the Product Selectivity. ChemCatChem. 2010;2(9):1030–1058.
  • van Vliet OPR, Faaij APC, Turkenburg WC. Fischer–Tropsch diesel production in a well-to-wheel perspective: a carbon, energy flow and cost analysis. Energy Convers Manag. 2009;50(4):855–876.
  • Blakey S, Rye L, Wilson CW. Aviation gas turbine alternative fuels: a review. Proc Combust Inst. 2011;33(2):2863–2885.
  • Szybist JP, Kirby SR, Boehman AL. NOx Emissions of alternative diesel fuels: a comparative analysis of biodiesel and ft diesel. Energy Fuels. 2005;19(4):1484–1492.
  • Eurostat. Oil and petroleum products [Internet]. 2017. Available from: http://ec.europa.eu/eurostat/statistics-explained/index.php/Oil_and_petroleum_products_-_a_statistical_overview.
  • Swedish Energy Agency. Biogas statistics 2015. 2016.
  • Partoft A, Olgemar P. Utvärdering av tekniska och marknadsmässiga förutsättningar för produktion av flytande biogas [Evaluation of technical and market conditions for the production of liquefied biogas]. 2017, Linköping University, Linköping, Sweden.
  • Arutyunov V, Nikitin A, Strekova L, et al. Utilization of renewable sources of biogas for small-scale production of liquid fuels. Catal Today. S0920586120304430 2020;doi: https://doi.org/10.1016/j.cattod.2020.06.057
  • Scarlat N, Dallemand J-F, Fahl F. Biogas: developments and perspectives in Europe. Renew Energy. 2018;129:457–472.
  • Swedish Waste Management Association. Den svenska biogaspotentialen från inhemska råvaror [The Swedish biogas potential from domestic raw materials]. 2008.
  • Swedish Government Official Reports. Fossilfrihet på väg [Freedom from fossils on roads]. 2013.
  • Zain MM, Mohamed AR. An overview on conversion technologies to produce value added products from CH4 and CO2 as major biogas constituents. Renew Sustain Energy Rev. 2018;98:56–63.
  • IPCC. IPCC Fourth assessment report: climate change 2007. 2007.
  • Meckling J, Nahm J. The politics of technology bans: industrial policy competition and green goals for the auto industry. Energy Policy. 2019;126:470–479.