959
Views
21
CrossRef citations to date
0
Altmetric
Articles

Machine learning prediction of the conversion of lignocellulosic biomass during hydrothermal carbonization

, ORCID Icon, &
Pages 703-715 | Received 29 Sep 2020, Accepted 20 Feb 2021, Published online: 06 Mar 2021

References

  • Ganesan R, Manigandan S, Samuel MS, et al. A review on prospective production of biofuel from microalgae. Biotechnol Rep (Amst). 2020;27:e00509.
  • Watkins D, Nuruddin M, Hosur M, et al. Extraction and characterization of lignin from different biomass resources. J Mater Res Technol. 2015;4(1):26–32.
  • Protásio TdP, Guimarães Jr M, Mirmehdi S, et al. Combustion of biomass and charcoal made from babassu nutshell. Cerne. 2017;23(1):1–10.
  • Demirbas A. Combustion characteristics of different biomass fuels. Prog Energy Combust Sci. 2004;30(2):219–230.
  • Álvarez A, Nogueiro D, Pizarro C, et al. Non-oxidative torrefaction of biomass to enhance its fuel properties. Energy. 2018;158:1–8.
  • Liu Z, Han G. Production of solid fuel biochar from waste biomass by low temperature pyrolysis. Fuel. 2015;158:159–165.
  • Chen W-H, Cheng W-Y, Lu K-M, et al. An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction. Appl Energy. 2011;88(11):3636–3644.
  • Lee J, Sohn D, Lee K, et al. Solid fuel production through hydrothermal carbonization of sewage sludge and microalgae Chlorella sp. from wastewater treatment plant. Chemosphere. 2019;230:157–163.
  • Shen Y, Yu S, Ge S, et al. Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale. Energy. 2017;118:312–323.
  • Arun J, Gopinath KP, Sivaramakrishnan R, et al. Hydrothermal liquefaction of Prosopis juliflora biomass for the production of ferulic acid and bio-oil. Bioresour Technol. 2021;319:124116.
  • Ding Y, Shan B, Cao X, et al. Development of bio oil and bio asphalt by hydrothermal liquefaction using lignocellulose. J Cleaner Prod. 2021;288:125586.
  • Zadeh ZE, Abdulkhani A, Aboelazayem O, et al. Recent Insights into lignocellulosic biomass pyrolysis: a critical review on pretreatment, characterization, and products upgrading. Processes. 2020;8(7):799.
  • Reddy SN, Nanda S, Dalai AK, et al. Supercritical water gasification of biomass for hydrogen production. Int J Hydrogen Energy. 2014;39(13):6912–6926.
  • Rapagnà S, Jand N, Foscolo P. Catalytic gasification of biomass to produce hydrogen rich gas. Int J Hydrogen Energy. 1998;23(7):551–557.
  • Li H, Mehmood D, Thorin E, et al. Biomethane production via anaerobic digestion and biomass gasification. Energy Procedia. 2017;105:1172–1177.
  • Chynoweth DP, Owens JM, Legrand R. Renewable methane from anaerobic digestion of biomass. Renewable Energy. 2001;22(1–3):1–8.
  • Pauline AL, Joseph K. Hydrothermal carbonization of organic wastes to carbonaceous solid fuel—a review of mechanisms and process parameters. Fuel. 2020;279:118472.
  • Zhang S, Zhu X, Zhou S, et al. Hydrothermal carbonization for hydrochar production and its application. In: Biochar from biomass and waste. Elsevier, Amsterdam, Netherlands; 2019. p. 275–294.
  • Liu F, Yu R, Guo M. Hydrothermal carbonization of forestry residues: influence of reaction temperature on holocellulose-derived hydrochar properties. J Mater Sci. 2017;52(3):1736–1746.
  • Sheng K, Zhang S, Liu J, et al. Hydrothermal carbonization of cellulose and xylan into hydrochars and application on glucose isomerization. J Cleaner Prod. 2019;237:117831.
  • Jain A, Balasubramanian R, Srinivasan M. Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem Eng J. 2016;283:789–805.
  • Gao P, Zhou Y, Meng F, et al. Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization. Energy. 2016;97:238–245.
  • Yang W, Wang H, Zhang M, et al. Fuel properties and combustion kinetics of hydrochar prepared by hydrothermal carbonization of bamboo. Bioresour Technol. 2016;205:199–204.
  • He C, Giannis A, Wang J-Y. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior. Appl Energy. 2013;111:257–266.
  • Liu Z, Quek A, Hoekman SK, et al. Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel. 2013;103:943–949.
  • Channiwala S, Parikh P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel. 2002;81(8):1051–1063.
  • Sekar M, Mathimani T, Alagumalai A, et al. A review on the pyrolysis of algal biomass for biochar and bio-oil – bottlenecks and scope. Fuel. 2021;283:119190.
  • Basso D, Patuzzi F, Castello D, et al. Agro-industrial waste to solid biofuel through hydrothermal carbonization. Waste Manag. 2016;47(Pt A):114–121.
  • Sabio E, Álvarez-Murillo A, Román S, et al. Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: influence of the processing variables. Waste Manag. 2016;47(Pt A):122–132.
  • Nizamuddin S, Baloch HA, Griffin GJ, et al. An overview of effect of process parameters on hydrothermal carbonization of biomass. Renewable Sustainable Energy Rev. 2017;73:1289–1299.
  • Sevilla M, Fuertes AB. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon. 2009;47(9):2281–2289.
  • Reza MT, Yan W, Uddin MH, et al. Reaction kinetics of hydrothermal carbonization of loblolly pine. Bioresour Technol. 2013;139:161–169.
  • Zhang B, Huang H-J, Ramaswamy S. Reaction kinetics of the hydrothermal treatment of lignin. In: Biotechnology for fuels and chemicals. Springer, Berlin; 2007. p. 487–499.
  • Jain AA, Mehra A, Ranade VV. Processing of TGA data: analysis of isoconversional and model fitting methods. Fuel. 2016;165:490–498.
  • Janković B. Kinetic analysis of the nonisothermal decomposition of potassium metabisulfite using the model-fitting and isoconversional (model-free) methods. Chem Eng J. 2008;139(1):128–135.
  • Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340–341:53–68.
  • Brindhadevi K, Shanmuganathan R, Pugazhendhi A, et al. Biohydrogen production using horizontal and vertical continuous stirred tank reactor - a numerical optimization. Int J Hydrogen Energy. 2020.doi: https://doi.org/10.1016/j.ijhydene.2020.06.155
  • Jahanmahin O, Kirby DJ, Smith BD, et al. Assembly of gold nanowires on gold nanostripe arrays: simulation and experiment. J Phys Chem C. 2020;124(17):9559–9571.
  • Kardani MN, Baghban A, Sasanipour J, et al. Group contribution methods for estimating CO2 absorption capacities of imidazolium and ammonium-based polyionic liquids. J Cleaner Prod. 2018;203:601–618.
  • Marzbali MH, Esmaieli M. Fixed bed adsorption of tetracycline on a mesoporous activated carbon: experimental study and neuro-fuzzy modeling. J Appl Res Technol. 2017;15(5):454–463.
  • Tauanov Z, Shah D, Inglezakis V, et al. Hydrothermal synthesis of zeolite production from coal fly ash: a heuristic approach and its optimization for system identification of conversion. J Cleaner Prod. 2018;182:616–623.
  • Kardani N, Zhou A, Nazem M, et al. Modelling of municipal solid waste gasification using an optimised ensemble soft computing model. Fuel. 2021;289:119903.
  • Chen T, Guestrin C. Xgboost: a scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining; 2016. p. 785–794.
  • Kardani N, Zhou A, Nazem M, et al. Estimation of bearing capacity of piles in cohesionless soil using optimised machine learning approaches. Geotech Geol Eng. 2020;38(2):2271–2291.
  • Kardani MN, Baghban A, Hamzehie ME, et al. Phase behavior modeling of asphaltene precipitation utilizing RBF-ANN approach. Pet Sci Technol. 2019;37(16):1861–1867.
  • Kardani N, Bardhan A, Kim D, et al. Modelling the energy performance of residential buildings using advanced computational frameworks based on RVM, GMDH, ANFIS-BBO and ANFIS-IPSO. J Build Eng. 2020; 35:102105.
  • Ghanbari A, Kardani MN, Moazami Goodarzi A, et al. Neural computing approach for estimation of natural gas dew point temperature in glycol dehydration plant. Int J Ambient Energy. 2020;41(7):775–778.
  • Drucker H, Burges CJ, Kaufman L, et al. Support vector regression machines. Mozer MC, Jordan MI, Petsche T. (Eds.), Adv Neural Inform Process Syst. 1997; 9, 155–161. http://papers.nips.cc/paper/1238-support-vector-regression-machines.pdf
  • Kardani MN, Baghban A. Utilization of LSSVM strategy to predict water content of sweet natural gas. Pet Sci Technol. 2017;35(8):761–767.
  • Vapnik V, Golowich SE, Smola AJ. Support vector method for function approximation, regression estimation and signal processing. In: Mozer M, Jordan M, Petsche T (eds), Adv Neural Inform Process Syst. MIT Press, 1997;281–287.
  • Kennedy J, Eberhart RC. A discrete binary version of the particle swarm algorithm. 1997 IEEE International conference on systems, man, and cybernetics. Computational cybernetics and simulation. IEEE; 1997. Vol. 5, p. 4104–4108.
  • Eberhart R, Kennedy J. Particle swarm optimization. Proceedings of the IEEE international conference on neural networks. Citeseer; 1995. Vol. 4, p. 1942–1948.
  • Lynam JG, Reza MT, Vasquez VR, et al. Effect of salt addition on hydrothermal carbonization of lignocellulosic biomass. Fuel. 2012;99:271–273.
  • Kambo HS, Dutta A. Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel. Energy Convers Manage. 2015;105:746–755.
  • Mäkelä M, Benavente V, Fullana A. Hydrothermal carbonization of lignocellulosic biomass: effect of process conditions on hydrochar properties. Appl Energy. 2015;155:576–584.
  • Lynam JG, Reza MT, Yan W, et al. Hydrothermal carbonization of various lignocellulosic biomass. Biomass Conv Bioref. 2015;5(2):173–181.
  • Marzbali MH, et al. Investigations into distribution and characterisation of products formed during hydrothermal carbonisation of paunch waste. J Environ Chem Eng. 2020; 9:1. 104672.doi: https://doi.org/10.1016/j.jece.2020.104672
  • Saverettiar G, Li D, Gross A, et al. Hydrothermal carbonization of cattle paunch waste: process conditions and product characteristics. J Environ Chem Eng. 2020;8(6):104487.
  • Duman G, Balmuk G, Cay H, et al. Comparative evaluation of torrefaction and hydrothermal carbonization: effect on fuel properties and combustion behavior of agricultural wastes. Energy Fuels. 2020;34(9):11175–11185.
  • Xiao L-P, Shi Z-J, Xu F, et al. Hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol. 2012;118:619–623.
  • Lang Q, Guo Y, Zheng Q, et al. Co-hydrothermal carbonization of lignocellulosic biomass and swine manure: hydrochar properties and heavy metal transformation behavior. Bioresour Technol. 2018;266:242–248.
  • Başakçılardan Kabakcı S, Baran SS. Hydrothermal carbonization of various lignocellulosics: fuel characteristics of hydrochars and surface characteristics of activated hydrochars. Waste Manag. 2019;100:259–268.
  • Minaret J, Dutta A. Comparison of liquid and vapor hydrothermal carbonization of corn husk for the use as a solid fuel. Bioresour Technol. 2016;200:804–811.
  • González-Arias J, Sánchez ME, Martínez EJ, et al. Hydrothermal carbonization of olive tree pruning as a sustainable way for improving biomass energy potential. Effect of reaction parameters on fuel properties. Processes. 2020;8(10):1201.
  • Kardani N, Zhou A, Nazem M, et al. Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data. J Rock Mech Geotech Eng. 2020.doi: https://doi.org/10.1016/j.jrmge.2020.05.011
  • Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error (MAE)?–arguments against avoiding RMSE in the literature. Geosci Model Dev. 2014;7(3):1247–1250.
  • Bi J, Bennett KP. Regression error characteristic curves. Proceedings of the 20th international conference on machine learning (ICML-03); 2003. p. 43–50.
  • Liu Z, Balasubramanian R. Hydrothermal carbonization of waste biomass for energy generation. Procedia Environ Sci. 2012;16:159–166.
  • Kim D, Lee K, Park KY. Upgrading the characteristics of biochar from cellulose, lignin, and xylan for solid biofuel production from biomass by hydrothermal carbonization. J Ind Eng Chem. 2016;42:95–100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.