81
Views
0
CrossRef citations to date
0
Altmetric
Articles

Detailed bioenergy investigation of Brazil biomass waste after biochemical process

ORCID Icon, , &
Pages 823-832 | Received 23 Apr 2021, Accepted 01 Aug 2021, Published online: 17 Aug 2021

References

  • Liao JC, Mi L, Pontrelli S, et al. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol. 2016;14(5):288–304.
  • Edrisi SA, Abhilash PC. Exploring marginal and degraded lands for biomass and bioenergy production: an Indian scenario. Renew Sust Energy Rev. 2016;54:1534–1551.
  • National Supply Company (CONAB). Harvest of sugarcane 2018/2019. Ministry of Agriculture, Livestock and Supply, Brazil 2020 [accessed 2020 Sep 14]. Available from: http://www.conab.gov.br
  • Sugarcane Producing Countries. 2020 [acessed 2020 Feb 25]. Available from: http://www.worldatlas.com
  • Mehmood MA, Ibrahim M, Rashid U, et al. Biomass production for bioenergy using marginal lands. Sust Product Consump. 2017;9:3–21.
  • Fukuda S. Pyrolysis investigation for bio-oil production from various biomass feedstocks in Thailand. Int Green Energy. 2015;12(3):215–224.
  • Liu G, Liao Y, Guo S, et al. Thermal behavior and kinetics of municipal solid waste during pyrolysis and combustion process. Appl Therm Eng. 2016;98:400–408.
  • Subodh U, Pundlik R, Bhagat R. Sugarcane bio-refinery products: an efficient one umbrella approach for synthesis of biofuel and value-added compounds using metal-free photo-catalyst. Fuel. 2021;303:121154.
  • Ceylan S, Kazan D. Pyrolysis kinetics and thermal characteristics of microalgae Nannochloropsis oculata and Tetraselmis sp. Bioresour Technol. 2015;187:1–5.
  • Maia AAD, Morais LC. Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresour Technol. 2016;204:157–163.
  • Morais LC, Maia AAD, Guandique MEG, et al. Pyrolysis and combustion of sugarcane bagasse. J Therm Anal Calorim. 2017;129(3):1813–1822.
  • Heo HS, Park HJ, Park Y-K, et al. Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. Bioresour Technol. 2010;101(1):91–96.
  • Viotto RS, Maia AAD, Yamaji FM, et al. Thermogravimetric investigation of spent shiitake substrate to solid biofuel. Can J Chem Eng. 2018;96(4):845–854.
  • Piętka J, Gendek A, Malaťák J, et al. Effects of selected white-roti fungi on the calorific value of beech wood (Fagus sylvatica L.). Biomass Bioenerg. 2019;127:105290.
  • Bueno CC, Maia AAD, de Morais LC, et al. Investigation on prospective energy power from corncob husk biomass and its biochars by kinetic parameters and isoconversional models. J Braz Chem Soc. 2017;28(11):2202–2210.
  • Ramamoorthy NK, Sambavi TR, Renganathan S. Assessment of fed-batch strategies for enhanced cellulase production from a waste lignocellulosic mixture. Biochem Eng J. 2019;152:107387.
  • Ramamoorthy NK, Sambavi TR, Renganathan S. A study on cellulase production from a mixture of lignocellulosic wastes. Process Biochem. 2019;83:148–158.
  • Ramamoorthy NK, Sambavi R, Renganathan S. Production of bio-ethanol from an innovative mixture of surgical waste cotton and waste card board after ammonia pre-treatment. Energy Sources Part A Rec Utiliz Environ Effects. 2018;40:2451–2457.
  • Ramamoorthy NK, Tr TR, Renganathan S. Production of bio-ethanol by an innovative biological pre-treatment of a novel mixture of surgical waste cotton and waste card board. Energy Sources Part A Rec Utiliz Environ Effects. 2020;42:2451–2457.
  • Ramamoorthy NK, Nagarajan R, Sambavi R, et al. An innovative plasma pre-treatment process for lignocellulosic bio-ethanol production. Energy Sources Part A Rec Utiliz Environ Effects. 2020. https://doi.org/https://doi.org/10.1080/15567036.2020.1815900
  • Barnard D, Casanueva A, Tuffin M, et al. Extremophiles in biofuel synthesis. Environ Technol. 2010;31(8-9):871–888.
  • Sánchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv. 2009;27(2):185–194.
  • Dimarogona M, Topakas E, Olsson L, et al. Lignin boosts the cellulase performance of a GH-61 enzyme from Sporotrichum thermophile. Bioresour Technol. 2012;110:480–487.
  • Quinlan RJ, Sweeney MD, Lo Leggio L, et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci USA. 2011;108(37):15079–15084.
  • Langston JA, Shaghasi T, Abbate E, et al. Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol. 2011;77(19):7007–7015.
  • Kirk TK, Cullen D. Entimology and molecular genetics of wood degradation by white-rot fungi. In: Kirk TK, editor. Environmentally friendly technologies for the pulp and paper industry. New York (NY): John Wiley and Sons; 1998, pp. 273–308.
  • Lee K, Moon SH. Electroenzymatic oxidation of veratryl alcohol by lignin peroxidase. J Biotechnol. 2003;102(3):261–268.
  • Leonowicz A, Matuszewska A, Luterek J, et al. Review: biodegradation of lignin by white rot fungi. Fungal Genet Biol. 1999;27(2-3):175–185.
  • Dong XQ, Yang JS, Zhu N, et al. Sugarcane bagasse degradation and characterization of three white-rot fungi. Bioresour Technol. 2013;131:443–451.
  • Bonnarme P, Jeffries TW. Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi. Appl Environ Microbiol. 1990;56(1):210–217.
  • Gold MH, Youngs HL, Gelpke MDS. Manganese peroxidase. Methods Ions Biolog System. 2000;7:559–586.
  • Baldrian P. Fungal laccases – occurrence and properties . FEMS Microbiol Rev. 2006;30(2):215–242.
  • Messerschmidt A, Huber R. The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships. Eur J Biochem. 1990;187(2):341–352.
  • Thurston CF. The structure and function of fungal laccases. Microbiol. 1994;140(1):19–26.
  • Gianfreda L, Xu F, Bollag JM. Laccases: a useful group of oxidoreductase enzymes. Biorem J. 1999;3(1):1–25.
  • Chang ST, Miles PG. Mushroom biology – a new discipline. Mycologist. 1992;6(2):64–65.
  • Morais LC, Maia AAD, Yamaji FM, et al. Energy analysis of sugarcane bagasse after enzymatic catalysis process. Biom Convers Biorefin. 2020. https://doi.org/https://doi.org/10.1007/s13399-020-01097-y
  • ASTM E871-82. Standard test method for moisture analysis of particulate wood fuels. West Conshohocken (PA): ASTM International; 2019. Available from: www.astm.org
  • ASTM E872-82(2013). Standard test method for volatile matter in the analysis of particulate wood fuels. West Conshohocken (PA): ASTM International; 2019. Available from: www.astm.org
  • ASTM D1102-84(2013). Standard test method for ash in wood. West Conshohocken (PA): ASTM International; 2019. Available from: www.astm.org
  • Bridgeman TG, Jones JM, Shield I, et al. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel. 2008;87(6):844–856.
  • Damartzis TH, Vamvuka D, Sfakiotakis S, et al. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA)). Bioresour Technol. 2011;102(10):6230–6238.
  • Xu Y, Chen B. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour Technol. 2013;146:485–493.
  • Akahira T, Sunose T. Transactions of Joint Convention of Four Electrical Institutes. 1969;246.
  • Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part C Polym Lett. 1966;4(5):323–328.
  • Ozawa T. A new method of analyzing thermogravimetric data. BCSJ. 1965;38(11):1881–1886.
  • Kim YS, Kim YS, Kim SH. Investigation of thermodynamic parameters in the thermal decomposition of plastic waste-waste lube oil compounds. Environ Sci Technol. 2010;44(13):5313–5317.
  • Castelló ML, Dweck J, Aranda DAG. Kinetic study of thermal processing of glycerol by thermogravimetry. J Therm Anal Calorim. 2011;105(3):737–746.
  • Mehmood MA, Ahmad MS, Liu Q, et al. Helianthus tuberosus as a promising feedstock for bioenergy and chemicals appraised through pyrolysis, kinetics, and TG-FTIR-MS based study. Energy Convers Manage. 2019;194:37–45.
  • Santos CM, Dweck J, Viotto RS, et al. Application of orange peel waste in the production of solid biofuels and biosorbents. Bioresour Technol. 2015;196:469–479.
  • Rasool T, Srivastava VC, Khan M. Utilisation of a waste biomass, walnut shells, to produce bio-products via pyrolysis: investigation using ISO-conversional and neural network methods. Biomass Convers Biorefin. 2018;8:1–11.
  • Rueda-Ordóñez YJ, Tannous K. Isoconversional kinetic study of the thermal decomposition of sugarcane straw for thermal conversion processes. Bioresour Technol. 2015;196:1–9.
  • Ahmad MS, Mehmood MA, Al Ayed OS, et al. Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential. Bioresour Technol. 2017;224:708–713.
  • Mehmood MA, Ye G, Luo H, et al. Pyrolysis and kinetic analyses of camel grass (Cymbopogon schoenanthus) for bioenergy. Bioresour Technol. 2017;228:18–24.
  • Maia AAD, Enriquez YAM, Morais LC. Experimental investigation of the delignification process influence on thermochemical and kinetic properties of biomass. J Therm Anal Calorim. 2020. doi: https://doi.org/10.1007/s10973-020-10061-x
  • Heydari M, Rahman M, Gupta R. Kinetic study and thermal decomposition because of lignite coal. Int J Chem Eng. 2015;2015:1–9.
  • Teixeira Cardoso AR, Conrado NM, Krause MC, et al. Chemical characterization of the bio-oil obtained by catalytic pyrolysis of sugarcane bagasse (industrial waste) from the species Erianthus arundinaceus. J Environ Chem Eng. 2019;7(2):102970.
  • Kumar M, Shukla SK, Upadhyay SN, et al. Analysis of thermal degradation of banana (Musa balbisiana) trunk biomass waste using iso-conversional models. Bioresour Technol. 2020;310:123393.
  • Hameed Z, Aman Z, Naqvi SR, et al. Kinetic and thermodynamic analyses of sugar cane bagasse and sewage sludge co-pyrolysis process. Energy Fuels. 2018;32(9):9551–9558.
  • Naqvi SR, Ali I, Nasir S, et al. Assessment of agro-industrial residues for bioenergy potential by investigating thermo-kinetic behavior in a slow pyrolysis process. Fuel. 2020;278:118259.
  • Kumar M, Mishra PK, Upadhyay SN. Thermal degradation of rice husk: effect of pre-treatment on kinetic and thermodynamic parameters. Fuel. 2020;268:117164.
  • Santos VO, Queiroz LS, Araujo RO, et al. Pyrolysis of acai seed biomass: kinetics and thermodynamic parameters using thermogravimetric analysis. Bioresour Technol. 2020;12:100553.
  • Guo Y, Tan C, Sun J, et al. Porous activated carbons derived from waste sugarcane bagasse for CO2 adsorption. Chem Eng J. 2020;381:122736.
  • Zhang B, Xu P, Qiu Y, et al. Increasing oxygen functional groups of activated carbon with non-thermal plasma to enhance mercury removal efficiency for flue gases. Chem Eng J. 2015;263:1–8.
  • Peres CB, Rosa AH, Morais DLC. CO2 adsorption of bagasse waste feedstock using thermogravimetric analyses. J Therm Anal Calorim. 2021. doi: https://doi.org/10.1007/s10973-021-10949-2
  • Torrellas SÁ, García Lovera R, Escalona N, et al. Chemical-activated carbons from peach stones for the adsorption of emerging contaminants in aqueous solutions. Chem Eng J. 2015;279:788–798.
  • Xu Z, Guo Z, Xiao X, et al. Effect of inorganic potassium compounds on the hydrothermal carbonization of Cd-contaminated rice straw for experimental-scale hydrochar. Biomass Bioener. 2019;130:105357.
  • Zhang Q, Han K, Li S, et al. Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors. Nanoscale. 2018;10(5):2427–2437.
  • Islam MA, Tan IAW, Benhouria A, et al. Mesoporous and adsorptive properties of palm date seed activated carbon prepared via sequential hydrothermal carbonization and sodium hydroxide activation. Chem Eng J. 2015;270:187–195.
  • Pérez NP, Pedroso DT, Machin EB, et al. Geometrical characteristics of sugarcane bagasse for being used as fuel in fluidized bed technologies. Renew Energ. 2019;143:1210–1224.
  • Peres CB, Rosa AH, Morais LC. Investigation of pyrolysis kinetics parameters and thermal behavior of thermochemically modified bagasse for bioenergy potential. SN Applied Sci. 2021;3:337. https://doi.org/https://doi.org/10.1007/s42452-021-04345-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.