101
Views
1
CrossRef citations to date
0
Altmetric
Articles

Multiobjective non linear model predictive control of transesterification and lipid oil production

&
Pages 885-894 | Received 28 Aug 2021, Accepted 15 Nov 2021, Published online: 14 Dec 2021

References

  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renewable Sustainable Energy Rev. 2010;14(1):217–232.
  • Soares AT, Bezerra D’Alessandro E, Lopes RG, et al. Optimization of biodiesel production by in situ transesterification from dry biomass of choricystis minor var. minor via response surface methodology. Biofuels. 2021;12(10):1301–1307.
  • da Silva BF, Schmitz JE, Franco IC, et al. Plantwide control systems design and evaluation applied to biodiesel production. Biofuels. 2021;12(10):1199–1207.
  • Humphrey I, Chendo MAC, Njah AN, et al. Optimization of microalgae growth for biofuel production using a new empirical dynamic model. Biofuels. 2021;12(10):1209–1224.
  • Madhumanti Mondal AAK. 2021. Immobilized microalgae for removing industrial pollutants: a greener technique. In: Wastewater treatment. Cutting Edge Molecular Tools, Techniques and Applied Aspects Elsevier 2021; Cutting Edge Molecular Tools, Techniques and Applied Aspects Elseiver 2021; p. 367–384.
  • Enamala MK, Enamala S, Chavali M, et al. Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renewable Sustainable Energy Rev. 2018;94:49–68.
  • Sharma J, Kumar SS, Bishnoi NR, et al. Screening and enrichment of high lipid producing microalgal consortia. J Photochem Photobiol B. 2019;192:8–12.
  • Sharma J, Kumar SS, Bishnoi NR, et al. Enhancement of lipid production from algal biomass through various growth parameters. J Mol Liq. 2018;269:712–720.
  • Mathimani T, Mallick N. A comprehensive review on harvesting of microalgae for biodiesel – key challenges and future directions. Renewable Sustainable Energy Rev. 2018;91:1103–1120. Volume
  • Chu W-L. Strategies to enhance production of microalgal biomass and lipids for biofuel feedstock. Eur J Phycol. 2017;52(4):419–437.
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.
  • Yang J, Rasa E, Tantayotai P, et al. Mathematical model of chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresour Technol. 2011;102(3):3077–3082.
  • Pirt SJ. The thermodynamic efficiency (quantum demand) and dynamics of photosynthetic growth. New Phytol. 1986;102:3–37.
  • Brown LM, Zeiler BG. Aquatic biomass and carbon dioxide trapping. Energy Convers Manage. 1993;34(9–11):1005–1013.
  • Klass DL. Biomass for renewable energy, fuels, and chemicals. San Diego, CA: Academic Press, 1998. p. 651.
  • Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008;26(3):126–131.
  • Yang JS, Huang JX, Ni JR. Mathematical modeling of batch fermentation of zoogloea sp. GY3 used for synthesizing polyhydroxyalkanoates. J Chem Technol Biotechnol. 2006;81(5):789–793.
  • Cheng Y, Lu Y, Gao C, et al. Algae-based biodiesel production and optimization using sugar cane as the feedstock. Energy Fuels. 2009;23(8):4166–4173.
  • Fangrui M, Milford H. Biodiesel production: review 1. Bioresour Technol. 1999;70:1-15.
  • Leung DYC, Wu X, Leung M. A review on biodiesel production using catalyzed transesterification. Appl Energy. 2010;87(4):1083–1095.
  • Noureddini H, Zhu D. Kinetic of transesterification of soybean oil. J Am Oil. 1997;74:1457–1463.
  • Mjalli F, San L, Yin K, Hussain M. Dynamics and Control of a Biodiesel Transesterification Reactor. Chemical Engineering & Technology. 2009;32:13–26. doi:https://doi.org/10.1002/ceat.200800243
  • Ferella F, Mazziotti G, De Michelis I, et al. Optimization of the transesterification reaction in biodiesel production. Fuel. 2010;89(1):36–42.
  • Sahoo PK, Das LM. Process optimization for biodiesel production from jatropha, karanja and polanga oils. Fuel. 2009;88(9):1588–1594.
  • Shashikant VG, Hifjur R. Process optimization for biodiesel production from mahua (madhuca indica) oil using response surface methodology. Bioresour Technol. 2006;97(379):379–84.
  • Santos F, Rodriguez S, Fernandez F. Optimization of the production of biodiesel from soybean oil by ultrasound assisted methanolysis. Fuel Process Technol. 2009;90:312.
  • Math MC, Sudheer PK, Soma VC. Optimization of biodiesel production from oils and fats with high free fatty acids. Indian J Sci Technol. 2010;3:318.
  • Luus R, Okongwu NO. Towards practical optimal control of batch reactors. Chem Eng J. 1999;75(1):1–9.
  • Luus R. Optimal control of batch reactors by iterative dynamic programming. J Proc Control. 1994;4(4):218–226.
  • Abdollahi J, Dubljevic S. Lipid production optimization and optimal control of heterotrophic microalgae fed-batch bioreactor. Chem Eng Sci. 2012;84:619–627.
  • De la Hoz Siegler H, Ben-Zvi A, Burrell RE, et al. The dynamics of heterotrophic algal cultures. Bioresour Technol. 2011;102(10):5764–5774.
  • Benavides P T. Urmila Diwekar Optimal control of biodiesel production in a batch reactor Part I: Deterministic control. Fuel. 2012;94(17):211–217.
  • Flores-Tlacuahuac A, Morales P, Rivera-Toledo M. Multiobjective nonlinear model predictive control of a class of chemical reactors. Ind Eng Chem Res. 2012;51(17):5891–5899.
  • Sridhar LN. Multiobjective optimization and nonlinear model predictive control of the continuous fermentation process involving Saccharomyces Cerevisiae. Biofuels. 2019;10:1–16.
  • Miettinen KM. Nonlinear multiobjective optimization. Kluwers International Series. Berlin/Heidelberg, Germany: Springer Science & Business Media; 1999.
  • Hart, William E, Laird CD, Watson J-P, et al. Pyomo – optimization modeling in python. 2nd ed. Vol. 67. Berlin/Heidelberg, Germany: Springer; 2017.
  • Biegler LT. An overview of simultaneous strategies for dynamic optimization. Chem Eng Process Process Intensif. 2007;46(11):1043–1105.
  • Tawarmalani M, Sahinidis NV. A polyhedral branch-and-cut approach to global optimization. Math Program. 2005;103(2):225–249.
  • Bussieck MR, Meeraus A. 2004. General algebraic modeling system (GAMS). In: Kallrath J, editor. Modeling languages in mathematical optimization. Applied optimization. Vol. 88. Boston, MA: Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.