145
Views
0
CrossRef citations to date
0
Altmetric
Articles

Metabolic engineered E. coli for the production of (R)-1,2-propanediol from biodiesel derived glycerol

, &
Pages 965-974 | Received 29 Oct 2021, Accepted 27 Feb 2022, Published online: 13 Mar 2022

References

  • Zhang R, Fujimori S. The role of transport electrification in global climate change mitigation scenarios. Environ Res Lett. 2020;15(3):034019.
  • Finn P, Fitzpatrick C, Connolly D. Demand side management of electric car charging: Benefits for consumer and grid. Energy. 2012;42(1):358–363.
  • REN21. Renewables 2021 global status report; 2021. Paris: REN21 Secretariat. ISBN 978-3-948393-03-8.
  • IRENA. Global energy transformation: a roadmap to 2050. Abu Dhabi, UAE: International Renewable Energy Agency; 2018; p. 31–33.
  • IRENA. Boosting biofuels sustainable paths to greater energy security. International Renewable Energy Agency, Abu Dhabi, UAE; 2016; p. 8–10.
  • Tabatabaei M, Karimi K, Horváth IS, et al. Recent trends in biodiesel production. Biofuel Res J. 2015;2(3):258–267.
  • Vijay KM, Goswami R. A review of production, properties and advantages of biodiesel. Biofuels. 2017;9(2):273–289.
  • Leung D, Wu X, Leung MK. A review on biodiesel production using catalyzed transesterification. Appl. Energ. 2010;87(4):1083–1095.
  • Quispe C, Coronado C, Carvalho J. Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable Sustainable Energy Rev. 2013;27:475–493.
  • Yang F, Hanna MA, Sun R. Value-added uses for crude glycerol- a byproduct of biodiesel production. Biotechnol Biofuels. 2012;5(1):1–10.
  • Research and Markets. Global glycerol market report 2013; 2013.
  • Ciriminna R, Pina CD, Rossi M, et al. Understanding the glycerol market. Eur J Lipid Sci Technol. 2014;116(10):1432–1439.
  • Anuar MR, Abdullah AZ. Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability issues: a critical review. Renewable Sustainable Energy Rev. 2016;58:208–223.
  • Garlapati VK, Shankar U, Budhiraja A. Bioconversion technologies of crude glycerol to value added industrial products. Biotechnol Rep (Amst). 2016;9:9–14.
  • Luo X, Ge X, Cui S, et al. Value-added processing of crude glycerol into chemicals and polymers. Bioresour Technol. 2016;215:144–154.
  • Ayoub M, Abdullah AZ. Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renewable Sustainable Energy Rev. 2012;16(5):2671–2686.
  • Ripoll M, Betancor L. Opportunities for the valorization of industrial glycerol via biotransformations. Curr Opin Green Sustain Chem. 2021;28:1–13.
  • Sivasankaran C, Ramanujam PK, Balasubramanian B, et al. Recent progress on transforming crude glycerol into high value chemicals: a critical review. Biofuels. 2019;10(3):309–314.
  • Behr A. The future of glycerol. New usages for a versatile raw material. By mario pagliaro and michele rossi. Chem Sus Chem. 2008;1(7):653–653.
  • Diaz-Alvarez AE, Francos J, Croche P, et al. Recent advances in the use of glycerol as green solvent for synthetic organic chemistry. CGC. 2013;1(1):51–65.
  • Veluturla S, Archna N, Subba R, et al. Catalytic valorization of raw glycerol derived from biodiesel: a review. Biofuels. 2018;9(3):305–314.
  • Arechederra RL, Minteer SD. Complete oxidation of glycerol in an enzymatic biofuel cell. Fuel Cells. 2009;9(1):63–69.
  • Dos Santos EO, Michelon M, Furlong EB, et al. Evaluation of the composition of culture cedium for yeast biomass production using raw glycerol from biodiesel synthesis. Braz J Microbiol. 2012;43(2):432–440.
  • Nitayavardhana S, Khanal SK. Bioresource technology biodiesel-derived crude glycerol bioconversion to animal feed: a sustainable option for a biodiesel refinery. Bioresour Technol. 2011;102(10):5808–5814.
  • Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. ‎Prog Polym Sci. 2000;25(10):1503–1555.
  • Mazière A, Prinsen P, García A, et al. A review of progress in (bio) catalytic routes from/to renewable succinic. Biofuels Bioprod Bioref. 2017;11(5):908–931.
  • Blankschien MD, Clomburg JM, Gonzalez R. Metabolic engineering of Escherichia coli for the production of succinate from glycerol. Metab Eng. 2010;12(5):409–419.
  • Gonzalez R, Murarka A, Dharmadi Y, et al. A new model for the anaerobic fermentation of glycerol in enteric bacteria: Trunk and auxiliary pathways in Escherichia coli. Metab Eng. 2008;10(5):234–245.
  • Mazumdar S, Clomburg JM, Gonzalez R. Escherichia coli strains engineered for homofermentative production of D-Lactic acid from glycerol. Appl Environ Microbiol. 2010;76(13):4327–4336.
  • Mazumdar S, Blankschien MD, Clomburg JM, et al. Efficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli. Microb Cell Fact. 2013;12(1):1–11.
  • Pagliaro M. Glycerol the renewable platform chemical. Amsterdam, Netherlands: Elsevier; 2017.
  • Barbirato F, Grivet JP, Soucaille P, et al. 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl Environ Microbiol. 1996;62(4):1448–1451.
  • Hoffman ML. Metabolic engineering of 1,2-propanediol production in Saccharomyces cerevisiae [Dissertation]. Madison (WI): University of Wisconsin; 1999.
  • Jiang W, Wang S, Wang Y, et al. Key enzymes catalyzing glycerol to 1,3-propanediol. Biotechnol Biofuels. 2016;9(1):1–19.
  • Costa-Gutierrez SB, Saez JM, Aparicio JD, et al. Glycerol as a substrate for actinobacteria of biotechnological interest: Advantages and perspectives in circular economy systems. Chemosphere. 2021; 279:130505.
  • Bennett GN, San KY. Microbial formation, biotechnological production and applications of 1,2-propanediol. Appl Microbiol Biotechnol. 2001;55(1):1–9.
  • Choi WJ. Glycerol-based biorefinery for fuels and chemicals. Recent Pat Biotechnol. 2008;2(3):173–180.
  • Zahid I, Ayoub M, Abdullah BB, et al. Production of fuel additive solketal via catalytic conversion of biodiesel-derived glycerol. Industr Engin Chem Res. 2020;59(48):20961–20978.
  • Clomburg JM, Gonzalez R. Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. Biotechnol Bioeng. 2011;108(4):867–879.
  • Jung JY, Yun HS, Lee JW, et al. Production of 1,2-Propanediol from glycerol in Saccharomyces cerevisiae. J Microbiol Biotechnol. 2011;21(8):846–853.
  • Sierra, W. Biotransformación del Glicerol, obtenido en la producción de biodiésel en productos de mayor valor agregado [Dissertation]. Montevideo, Uruguay: Universidad de la República; 2017
  • Murarka A, Dharmadi Y, Yazdani SS, et al. Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol. 2008;74(4):1124–1135.
  • Dharmadi Y, Murarka A, Gonzalez R. Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng. 2006;94(5):821–829.
  • Islam Z-U, Klein M, Aßkamp MR, et al. A modular metabolic engineering approach for the production of 1,2-propanediol from glycerol by Saccharomyces cerevisiae. Metab Eng. 2017;44:223–235.
  • Mat-Jan F, Alam KY, Clark DP. Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase. J Bacteriol. 1989;171(1):342–348.
  • Rodriguez S. Baker’s yeast β-Keto ester reductions: Whole cell biocatalists with improved stereoselectivity by recombinant DNA techniques [Dissertation]. University of Florida; 2000.
  • Altaras NE, Cameron DC. Metabolic engineering of a 1,2-Propanediol pathway in Escherichia coli. Appl Environ Microbiol. 1999; 65(3):1180–1185.
  • Ellen Macarthur Foundation. Towards the circular economy - Economic and business rationale for an accelerated transition. Ellen MacArthur Foundation: Cowes, UK; 2013. p. 21–34.
  • Mohan SV, Nikhil GN, Chiranjeevi P, et al. Bioresource technology waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresour Technol. 2016;215:2–12.
  • Geissdoerfer M, Savaget P, Bocken NM, et al. The circular economy. A new sustainability paradigm? J Clean Prod. 2017;143:757–768.
  • Winans K, Kendall A, Deng H. The history and current applications of the circular economy concept. Renewable Sustainable Energy Rev. 2017;68:825–833.
  • Grochowski L, Xu H, White RH. Identification of lactaldehyde dehydrogenase in Methanocaldococcus jannaschii and its involvement in production of lactate for F420 biosynthesis. J Bacteriol. 2006;188(8):2836–2844.
  • Kang Y, Son MS, Hoang TT. One step engineering of T7-expression strains for protein production: increasing the host-range of the T7-expression system. Protein Expr Purif. 2007;55(2):325–333.
  • National Institute of Standards and Technology - US Department of Commerce. NIST- webbook of Chemistry. Available from: http://webbook.nist.gov/cgi/cbook.cgi?ID=C57556&Mask=200#Mass-Spec. (Accessed 21 October 2021).
  • Izquierdo I, Plaza MT, Rodrı́guez M, et al. Lipase-mediated partial resolution of 1,2-diol and 2-alkanol derivatives: towards chiral building-blocks for pheromone synthesis. Tetrahedron: Asymmetry. 2000;11(8):1749–1756.
  • Chang Q, Harter T, Griest T, et al. 2004. Aldo-Keto reductases in the stress response of the budding yeast Saccharomyces cerevisiae. Diversity of yeast aldo-keto reductases. In: Aldo-Keto reductases and toxicant metabolism; ACS Symposium Series. Washington, DC: American Chemical Society.
  • Garay-Arroyo A, Covarrubias AA. Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast. 1999;15(10A):879–892.
  • Nakamura K, Kondo S, Kawai Y, et al. Amino acid sequence and characterization of Aldo-Keto reductase from Bakers’ Yeast. Biosci Biotech Biochem. 1997;61(2):375–377.
  • Ferguson GP, Tötemeyer S, MacLean MJ, et al. Methylglyoxal production in bacteria: suicide or survival? Arch Microbiol. 1998;170(4):209–218.
  • Cooper RA. Metabolism of methylglyoxal in microorganisms. Annu Rev Microbiol. 1984;38(1):49–68.
  • Grabar TB, Zhou S, Shanmugam KT, et al. Methylglyoxal bypass identified as source of chiral contamination in L(+) and D(-) lactate fermentations by recombinant Escherichia coli. Biotechnol Lett. 2006;28(19):1527–1535.
  • Jantama K, Zhang X, Moore JC, et al. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol Bioeng. 2008;101(5):881–893.
  • Sawers G, Hesslinger C, Muller N, et al. The glycyl radical enzyme TdcE can replace pyruvate formate-lyase in glucose fermentation. J Bacteriol. 1998;180(14):3509–3516.
  • Hesslinger C, Fairhurst SA, Sawers G. Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades L-threonine to propionate. Mol Microbiol. 1998;27(2):477–492.
  • White D. 2000. Physiology and biochemistry of prokariotes. Oxford. UK: OxfordUniversity Press.
  • Rodriguez S, Kayser MM, Stewart JD. Highly stereoselective reagents for β-keto ester reductions by genetic engineering of baker’s yeast. J Am Chem Soc. 2001;123(8):1547–1555.
  • Prelog V. Specification of the stereospecificity of some oxido-reductases by diamond lattice sections. Pure Appl Chem. 1964;9(1):119–130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.