205
Views
2
CrossRef citations to date
0
Altmetric
Articles

Ensiling parameters in vertical columns and multiple kinetic models evaluation of biomethane potential of ensiled sugar beet leaves

, , , &
Pages 995-1005 | Received 25 Jan 2022, Accepted 27 Mar 2022, Published online: 24 Apr 2022

References

  • Aramrueang N, Zicari S, Zhang R. Response surface optimization of enzymatic hydrolysis of sugar beet leaves into fermentable sugars for bioethanol production. ABB. 2017;08(02):51–67.
  • Kreuger E, Nges IA, Björnsson L. Ensiling of crops for biogas production: effects on methane yield and total solids determination. Biotechnol Biofuels. 2011;4(1):44.
  • Larsen SU, Hjort-Gregersen K, Vazifehkhoran AH, et al. Co-ensiling of straw with sugar beet leaves increases the methane yield from straw. Bioresour Technol. 2017;245(Pt A):106–115.
  • Franco RT, Buffière P, Bayard R. Co-ensiling of cattle manure before biogas production. Effects of fermentation stimulants and inhibitors on biomass and methane preservation. Renew Energy. 2018;121:315–323.
  • Wilkinson JM, Davies DR. The aerobic stability of silage. Key findings and recent developments. Grass Forage Sci. 2013;68(1):1–19.
  • Muck ER. Butyric acids in silage: why it happens. Madison, Wisconsin, USA: United States Department of Agriculture; 2011, checked on 2/11/2021.
  • Kung L, Shaver RD, Grant RJ, et al. Silage review: interpretation of chemical, microbial, and organoleptic components of silages. J Dairy Sci. 2018;101(5):4020–4033.
  • Teixeira Franco R, Buffière P, Bayard R. Cattle manure for biogas production. Does ensiling and wheat straw addition enhance preservation of biomass and methane potential? Biofuels. 2020;11(6):671–682.
  • Xu D, Ding Z, Bai J, et al. Evaluation of the effect of feruloyl esterase-producing Lactobacillus plantarum and cellulase pretreatments on lignocellulosic degradation and cellulose conversion of co-ensiled corn stalk and potato pulp. Bioresour Technol. 2020;310:123476.
  • Zheng Y, Zhao J, Xu F, et al. Pretreatment of lignocellulosic biomass for enhanced biogas production. Progr Energy Combust Sci. 2014;42:35–53. In
  • Gallegos D, Wedwitschka H, Moeller L, et al. Mixed silage of Elodea and wheat straw as a substrate for energy production in anaerobic digestion plants. Energ Sustain Soc. 2018;8(1):110.
  • Hillion M-L, Moscoviz R, Trably E, et al. Co-ensiling as a new technique for long-term storage of agro-industrial waste with low sugar content prior to anaerobic digestion. Waste Manag. 2018;71:147–155.
  • Zheng Y, Lee C, Yu C, et al. Ensilage and bioconversion of grape pomace into fuel ethanol. J Agric Food Chem. 2012a;60(44):11128–11134.
  • Heidarzadeh Vazifehkhoran A, Triolo J, Larsen S, et al. Assessment of the variability of biogas production from sugar beet silage as affected by movement and loss of the produced alcohols and organic acids. Energies. 2016;9(5):368.
  • Kilmartin PA, Oberholster A. 16 – Grape harvesting and effects on wine composition. In A. G. Reynolds, editor. Managing wine quality (Woodhead Publishing Series in Food Science, Technology and nutrition). 2nd ed. Sawston, United Kingdom: Woodhead Publishing; 2022. p. 705–726. https://www.sciencedirect.com/science/article/pii/B9780081020678000142.
  • López-Pérez P, Cuervo-Parra J, Robles-Olvera VJ, et al. Development of a novel kinetic model for cocoa fermentation applying the evolutionary optimization approach. Int J Food Eng. 2018;14(5-6): 1-14.
  • López-Pérez PA, Puebla H, Velázquez Sánchez HI, et al. Comparison tools for parametric identification of kinetic model for ethanol production using evolutionary optimization approach. Int J Chem Reactor Eng. 2016;14(6):1201–1209.
  • Romero Cortes T, Cuervo-Parra J, José Robles-Olvera V, et al. Experimental and kinetic production of ethanol using mucilage juice residues from cocoa processing. Int J Chem Reactor Eng. 2018;16(11): 1–16.
  • Strach K. Determination of total solids (dry matter) and volatile solids (organic dry matter). In: J Liebetrau, editor. Collection of methods for biogas. Methods to determine parameters for analysis purposes and parameters that describe processes in the biogas sector. With assistance of Diana Pfeiffer, Daniela Thrän. 7 volumes. Germany (Biomass Energy use, 7); 2016. p. 26–27. Berlin, Germany: Federal ministry of Economic Affairs and Energy.
  • Weissbach F, Strubelt C. Correcting the dry matter content of grass silages as a substrate for biogas production. Landtechnik. 2008;63(4):210–211. http://www.landtechnik-net.com.
  • Mühlenberg J. Determination of sugars and glucose degradation products. In: J. Liebetrau, editor. Collection of methods for biogas. Methods to determine parameters for analysis purposes and parameters that describe processes in the biogas sector. With assistance of Diana Pfeiffer, Daniela Thrän. Berlin, Germany: Federal ministry of Economic Affairs and Energy. 7 volumes (Biomass Energy use, 7); 2016. p. 50–53.
  • Apelt M. Determination of aliphatic, organic acids and benzaldehyde with headspace GC. In: J Liebetrau, editor. Collection of methods for biogas. Methods to determine parameters for analysis purposes and parameters that describe processes in the biogas sector. With assistance of Diana Pfeiffer, Daniela Thrän. 7 vols. (Biomass Energy Use, 7); 2016. p. 35–39. Berlin, Germany: Federal Ministry of Economic Affairs and Energy.
  • Sträuber H, Bühligen F, Kleinsteuber S, et al. Improved anaerobic fermentation of wheat straw by alkaline pre-treatment and addition of alkali-tolerant microorganisms. Bioengineering (Basel). 2015;2(2):66–93.
  • Muloiwa M, Nyende-Byakika S, Dinka M. Comparison of unstructured kinetic bacterial growth models. South Afr J Chem Eng. 2020;33:141–150.
  • Auerbach H, Theobald P, Kroschewski B, et al. Effects of various additives on fermentation, aerobic stability and volatile organic compounds in whole-crop rye silage. Agronomy. 2020;10(12):1873.
  • Sun H, Cui X, Stinner W, et al. Ensiling excessively wilted maize stover with biogas slurry: effects on storage performance and subsequent biogas potential. Bioresour Technol. 2020;305:123042.
  • Kafle GK, Kim SH, Sung KI. Ensiling of fish industry waste for biogas production: a lab scale evaluation of biochemical methane potential (BMP) and kinetics. Bioresour Technol. 2013;127:326–336.
  • He Q, Zhou W, Chen X, et al. Chemical and bacterial composition of Broussonetia papyrifera leaves ensiled at two ensiling densities with or without Lactobacillus plantarum. J Clean Prod. 2021;329:129792.
  • Rooke J, Hatfield R. Biochemistry of ensiling. 2003. Madison, Wisconsin, USA: American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc.
  • Kafle GK, Kim SH. Effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products. Bioresour Technol. 2013;142:553–561.
  • Zheng Y, Yu C, Cheng Y-S, et al. Integrating sugar beet pulp storage, hydrolysis and fermentation for fuel ethanol production. Appl Energy. 2012b;93:168–175.
  • Yang L, Yuan X, Li J, et al. Dynamics of microbial community and fermentation quality during ensiling of sterile and nonsterile alfalfa with or without Lactobacillus plantarum inoculant. Bioresour Technol. 2019;275:280–287.
  • Kalač P. Chapter 4 – Detrimental compounds and bacteria. In: P. Kalač, editor. Effects of forage feeding on milk. Amsterdam, Netherlands: Elsevier Science; 2017. p. 125–173.
  • Liu Q, Lindow S, Zhang J. Lactobacillus parafarraginis ZH1 producing anti-yeast substances to improve the aerobic stability of silage. Anim Sci J. 2018;89(9):1302–1309.
  • Wang C, Han H, Gu X, et al. A survey of fermentation products and bacterial communities in corn silage produced in a bunker silo in China. Anim Sci J. 2014;85(1):32–36.
  • Tenorio AT. Sugar beet leaves for functional ingredients [PhD thesis]. Wageningen (Netherlands): Wageningen University; 2017, checked on 7/9/2020.
  • Herremans S, Decruyenaere V, Beckers Y, et al. Silage additives to reduce protein degradation during ensiling and evaluation of in vitro ruminal nitrogen degradability. Grass Forage Sci. 2019;74(1):86–96.
  • Herrmann C, Idler C, Heiermann M. Improving aerobic stability and biogas production of maize silage using silage additives. Bioresour Technol. 2015;197:393–403.
  • Franco RT, Buffière P, Bayard R. Optimizing storage of a catch crop before biogas production. Impact of ensiling and wilting under unsuitable weather conditions. Biomass Bioenergy. 2017;100:84–91.
  • Nguyen DD, Jeon B-H, Jeung JH, et al. Thermophilic anaerobic digestion of model organic wastes: evaluation of biomethane production and multiple kinetic models analysis. Bioresour Technol. 2019;280:269–276.
  • Vitez T, Elbl J, Travnicek P, et al. Impact of maize harvest techniques on biomethane production. Bioenerg Res. 2021;14(1):303–312.
  • Wróbel M, Jewiarz M, Szlęk A, Mioduszewska N, Przybył J, Smurzyńska A, et al., editors.Analysis of methane efficiency of sugar beets used as co-substrate in biogas production. Renewable energy sources: engineering, technology, innovation. Cham (Switzerland): Springer International Publishing; 2020.
  • Amon T, Amon B, Kryvoruchko V, Machmüller A, Hopfner-Sixt K, Bodiroza V. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresource Technology 2007;98(17):3204–12. https://doi.org/10.1016/j.biortech.2006.07.007.
  • Gissén C, Prade T, Kreuger E, Nges IA, Rosenqvist H, Svensson S-E. Comparing energy crops for biogas production – Yields, energy input and costs in cultivation using digestate and mineral fertilisation. Biomass and Bioenergy 2014;64:199–210. https://doi.org/10.1016/j.biombioe.2014.03.061
  • Brulé M, Oechsner H, Jungbluth T. Exponential model describing methane production kinetics in batch anaerobic digestion: a tool for evaluation of biochemical methane potential assays. Bioprocess Biosyst Eng. 2014;37(9):1759–1770.
  • Strömberg S, Nistor M, Liu J. Early prediction of biochemical methane potential through statistical and kinetic modelling of initial gas production. Bioresour Technol. 2015;176:233–241.
  • Mao C, Zhang T, Wang X, et al. Process performance and methane production optimizing of anaerobic co-digestion of swine manure and corn straw. Sci Rep. 2017;7(1):9379.
  • Pramanik SK, Suja FB, Porhemmat M, et al. Performance and kinetic model of a single-stage anaerobic digestion system operated at different successive operating stages for the treatment of food waste. Processes. 2019;7(9):600.
  • Ohuchi Y, Ying C, Lateef S, et al. Anaerobic co-digestion of sugar beet tops silage and dairy cow manure under thermophilic condition. J Mater Cycles Waste Manag. 2015;17(3):540–546.
  • Fogler HS. Elements of chemical reaction engineering. 5th ed. Boston, USA: Prentice Hall; 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.