251
Views
3
CrossRef citations to date
0
Altmetric
Articles

Thermogravimetric and combustion efficiency analysis of Jatropha curcas biodiesel and its derivatives

ORCID Icon, , , ORCID Icon, , , & show all
Pages 1069-1079 | Received 10 Feb 2022, Accepted 11 Jun 2022, Published online: 01 Jul 2022

References

  • Kumar S, Dinesha P. Use of alternative fuels in compression ignition engines: a review. Biofuels. 2019;10(4):525–535.
  • Mishra VK, Goswami R. A review of production, properties and advantages of biodiesel. Biofuels. 2018;9(2):273–289.
  • Thiyagarajan S, Varuvel E, Karthickeyan V, et al. Effect of hydrogen on compression-ignition (CI) engine fueled with vegetable oil/biodiesel from various feedstocks: a review. Int J Hydrogen Energy. 2022. https://doi.org/10.1016/j.ijhydene.2021.12.147
  • Fattah IMR, Ong HC, Mahlia TMI, et al. State of the art of catalysts for biodiesel production. Front. Energy Res. 2020;8:101.
  • Viswanathan K, Ikhsan Taipabu M, Wu W. Novel petit grain bitter orange waste peel oil biofuel investigation in diesel engine with modified fuel injection pressure and bowl geometry. Fuel. 2022;319:123660.
  • Seela CR, Ravi Sankar B, Sai Kiran D. Influence of biodiesel and its blends on CI engine performance and emissions: a review. Biofuels. 2017;8(1):163–179.
  • Kumar A, Subramanian KA. Experimental investigation on effects of karanja biodiesel (B100) on performance, combustion, and regulated and GHG emissions characteristics of an automotive diesel engine. Biofuels. 2020;11(3):239–250.
  • Swaminathan C, Sarangan J, Michael BS. Investigation of performance and emission characteristics of IC engine using sunflower oil methyl ester as fuel with oxygenated additive and EGR. Biofuels. 2019;10(5):583–589.
  • Veza I, Afzal A, Mujtaba MA, et al. Review of artificial neural networks for gasoline, diesel and homogeneous charge compression ignition engine. Alexandria Eng J. 2022;61(11):8363–8391.
  • Manaf ISA, Embong NH, Khazaai SNM, et al. A review for key challenges of the development of biodiesel industry. Energy Convers Manage. 2019;185:508–517.
  • Iyer R. A review on the role of allylic and bis allylic positions in biodiesel fuel stability from reported lipid sources. Biofuels (London). 2017;8(5):543–554.
  • Kavitha KR, Beemkumar N, Rajasekar R. Experimental investigation of diesel engine performance fuelled with the blends of Jatropha curcas, ethanol, and diesel. Environ Sci Pollut Res Int. 2019;26(9):8633–8639.
  • Borah N, Mapelli S, Pecchia P, et al. Variability of growth and oil characteristics of Jatropha curcas L. in North-east India. Biofuels. 2021;12(3):327–337.
  • Azad AK, Adhikari J, Halder P, et al. Performance, emission and combustion characteristics of a diesel engine powered by macadamia and grapeseed biodiesels. Energies. 2020;13(11):2748.
  • Viswanathan K, Wang S, Esakkimuthu S. Impact of yttria stabilized zirconia coating on diesel engine performance and emission characteristics fuelled by lemon grass oil biofuel. J Therm Anal Calorim. 2021;146(5):2303–2315.
  • Taipabu MI, Viswanathan K, Wu W, et al. Production of renewable fuels and chemicals from fats, oils, and grease (FOG) using homogeneous and heterogeneous catalysts: design, validation, and optimization. Chem Eng J. 2021;424:130199.
  • Thomas A. Chapter five – automotive fuels. In: Arcoumanis C, editor. Internal combustion engines. London: Academic Press; 1988. p. 213–270.
  • Xia Y, Larock RC. Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem. 2010;12(11):1893–1909.
  • Rial RC, de Freitas ON, Santos G, et al. Evaluation of the oxidative and thermal stability of soybean methyl biodiesel with additions of dichloromethane extract ginger (Zingiber officinale Roscoe). Renew Energy. 2019;143:295–300.
  • Balajii M, Niju S. Biochar-derived heterogeneous catalysts for biodiesel production. Environ Chem Lett. 2019;17(4):1447–1469.
  • Lamprecht I. Chapter 4 – combustion calorimetry. In: Kemp RB, editor. Handbook of thermal analysis and calorimetry. Amsterdam, The Netherlands: Elsevier Science B.V.; 1999. p. 175–218.
  • Chauhan BS, Kumar N, Cho HM. A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends. Energy. 2012;37(1):616–622.
  • Banapurmath NR, Tewari PG, Hosmath RS. Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters. Renew Energy. 2008;33(9):1982–1988.
  • Farias RMC, Conceição MM, Candeia RA, et al. Evaluation of the thermal stability of biodiesel blends of castor oil and passion fruit. J Therm Anal Calorim. 2011;106(3):651–655.
  • Santos AGD, Caldeira VPS, Souza LD, et al. Study of the thermal stability by thermogravimetry for oil, biodiesel and blend (B10) of different oilseeds. J Therm Anal Calorim. 2016;123(3):2021–2028.
  • Volli V, Purkait MK. Physico-chemical properties and thermal degradation studies of commercial oils in nitrogen atmosphere. Fuel. 2014;117:1010–1019.
  • Dwivedi G, Sharma MP. Experimental investigation on thermal stability of Pongamia biodiesel by thermogravimetric analysis. Egypt J Pet. 2016;25(1):33–38.
  • John CB, Solamalai AR, Jambulingam R, et al. Estimation of fuel properties and characterization of hemp biodiesel using spectrometric techniques. Energy Sources Part A. 2020;1–18. doi: 10.1080/15567036.2020.1842559
  • Wnorowska J, Ciukaj S, Kalisz S. Thermogravimetric analysis of solid biofuels with additive under air atmosphere. Energies. 2021;14(8):2257.
  • Leonardo RS, Murta Valle ML, Dweck J. Thermovolumetric and thermogravimetric analysis of diesel S10. J Therm Anal Calorim. 2020;139(2):1507–1514.
  • Donoso D, Bolonio D, Lapuerta M, et al. Oxidation stability: the bottleneck for the development of a fully renewable biofuel from wine industry waste. ACS Omega. 2020;5(27):16645–16653.
  • Fattah IMR, Masjuki HH, Kalam MA, et al. Performance and emission characteristics of a CI engine fueled with Cocos nucifera and Jatropha curcas B20 blends accompanying antioxidants. Ind Crops Prod. 2014;57:132–140.
  • Singh D, Sharma D, Soni SL, et al. A comprehensive review of physicochemical properties, production process, performance and emissions characteristics of 2nd generation biodiesel feedstock: Jatropha curcas. Fuel. 2021;285:119110.
  • Swathi D, Gopa BV, Rao PV, et al. Optimization of Jatropha methyl ester and study of its physico-chemical properties using GC-MS and FT-IR analysis. Austin Chem Eng. 2016;3(2):1027.
  • Ren X, Meng J, Moore AM, et al. Thermogravimetric investigation on the degradation properties and combustion performance of bio-oils. Bioresour Technol. 2014;152:267–274.
  • Posom J, Sirisomboon P. Evaluation of the thermal properties of Jatropha curcas L. kernels using near-infrared spectroscopy. Biosyst Eng. 2014;125:45–53.
  • El-Seesy AI, Xuan T, He Z, et al. Enhancement the combustion aspects of a CI engine working with Jatropha biodiesel/decanol/propanol ternary combinations. Energy Convers Manage. 2020;226:113524.
  • Atgur V, Manavendra G, Desai GP, et al. Thermogravitometry and calorimetric evaluation of honge oil methyl ester and its B-20 blend. Cleaner Eng Technol. 2022;6:100367.
  • Giuliano Albo PA, Lago S, Wolf H, et al. Density, viscosity and specific heat capacity of diesel blends with rapeseed and soybean oil methyl ester. Biomass Bioenergy. 2017;96:87–95.
  • Freire LMS, Bicudo TC, Rosenhaim R, et al. Thermal investigation of oil and biodiesel from Jatropha curcas L. J Therm Anal Calorim. 2009;96(3):1029–1033.
  • Abdullah BM, Yusop RM, Salimon J, et al. Physical and chemical properties analysis of Jatropha curcas seed oil for industrial applications. Int J Chem Sci Eng. 2013;7(12):183–186.
  • Vossoughi S, El-Shoubary YM. Kinetics of liquid hydrocarbon combustion using the DSC technique. Thermochim Acta. 1990;157(1):37–44.
  • Xue J, Grift TE, Hansen AC. Effect of biodiesel on engine performances and emissions. Renew Sustain Energy Rev. 2011;15(2):1098–1116.
  • Teoh YH, Masjuki HH, Kalam MA, et al. Effects of jatropha biodiesel on the performance, emissions, and combustion of a converted common-rail diesel engine. RSC Adv. 2014;4(92):50739–50751.
  • Garcia-Perez M, Adams TT, Goodrum JW, et al. DSC studies to evaluate the impact of bio-oil on cold flow properties and oxidation stability of bio-diesel. Bioresour Technol. 2010;101(15):6219–6224.
  • Atgur V, Manavendra G, Desai GP, et al. Thermal characterisation of dairy washed scum methyl ester and its b-20 blend for combustion applications. Int J Ambient Energy. 2021;1–11. doi: 10.1080/01430750.2021.1909651
  • Dunn RO. Thermal analysis of alternative diesel fuels from vegetable oils. J Am Oil Chem Soc. 1999;76(1):109–115.
  • Mohammed MN, Atabani AE, Uguz G, et al. Characterization of Hemp (Cannabis sativa L.) biodiesel blends with euro diesel, butanol and diethyl ether using FT-IR, UV–vis, TGA and DSC techniques. Waste Biomass Valor. 2020;11(3):1097–1113.
  • Peer MS, Kasimani R, Rajamohan S, et al. Experimental evaluation on oxidation stability of biodiesel/diesel blends with alcohol addition by rancimat instrument and FTIR spectroscopy. J Mech Sci Technol. 2017;31(1):455–463.
  • Silva WC, Castro MPP, Perez VH, et al. Thermal degradation of ethanolic biodiesel: physicochemical and thermal properties evaluation. Energy. 2016;114:1093–1099.
  • Misutsu MY, Cavalheiro LF, Ricci TG, et al. Thermoanalytical methods in verifying the quality of biodiesel. In: Biernat K, editor. Biofuels – status and perspective. London: IntechOpen; 2015. doi: 10.5772/59479
  • de Oliveira TF, Dweck J. Liquid phase oxidation quantitative analysis of biodiesel/diesel blends by differential TG and DTA. J Therm Anal Calorim. 2018;134(3):1953–1963.
  • Almazrouei M, Janajreh I. Thermogravimetric study of the combustion characteristics of biodiesel and petroleum diesel. J Therm Anal Calorim. 2019;136(2):925–935.
  • Damasceno SS, Rosenhaim R, Gondim AD, et al. Flow properties of biodiesel: correlation between TMDSC and dynamic viscosity. J Therm Anal Calorim. 2013;114(3):1239–1243.
  • Nicolau CL, Klein ANV, Silva CAA, et al. Thermal properties of the blends of methyl and ethyl esters prepared from babassu and soybean oils. J. Braz. Chem. Soc. 2018;29(8):1672–1679.
  • Candeia RA, Freitas JCO, Souza MAF, et al. Thermaland rheological behavior of diesel and methanol biodiesel blends. J Therm Anal Calorim. 2007;87(3):653–656.
  • Dantas MB, Albuquerque AR, Soledade LEB, et al. Biodiesel from soybean oil, castor oil and their blends. J Therm Anal Calorim. 2011;106(2):607–611.
  • Mujtaba MA, Muk Cho H, Masjuki HH, et al. Critical review on sesame seed oil and its methyl ester on cold flow and oxidation stability. Energy Rep. 2020;6:40–54.
  • Conceição MM, Fernandes VJ, Araújo AS, et al. Thermal and oxidative degradation of castor oil biodiesel. Energy Fuels. 2007;21(3):1522–1527.
  • Zhao H, Cao Y, Orndorff W, et al. Thermal behaviors of soy biodiesel. J Therm Anal Calorim. 2012;109(3):1145–1150.
  • Shancita I, Masjuki HH, Kalam MA, et al. Comparative analysis on property improvement using Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) (1H and 13C) spectra of various biodiesel blended fuels. Energy Fuels. 2016;30(6):4790–4805.
  • Jain S, Sharma MP. Correlation development between the oxidation and thermal stability of biodiesel. Fuel. 2012;102:354–358.
  • Niu S-l, Han K-h, Lu C-m. Characteristic of coal combustion in oxygen/carbon dioxide atmosphere and nitric oxide release during this process. Energy Convers Manage. 2011;52(1):532–537.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.