279
Views
2
CrossRef citations to date
0
Altmetric
Articles

Assessing the potential of nutrient deficiency for enhancement of biodiesel production in algal resources

, , , &
Pages 1-34 | Received 16 Apr 2022, Accepted 24 Jul 2022, Published online: 05 Aug 2022

References

  • Hasnain M, Abideen Z, Naz S, et al. Biodiesel production from new algal sources using response surface methodology and microwave application. Biomass Convers Biorefinery. 2021.
  • Naqvi SR, Ali I, Nasir S, et al. Assessment of agro-industrial residues for bioenergy potential by investigating thermo-kinetic behavior in a slow pyrolysis process. Fuel. 2020;278:118259.
  • Soudagar MEM, Afzal A, Kareemullah M. Waste coconut oil methyl ester with and without additives as an alternative fuel in diesel engine at two different injection pressures, energy sources, part a recover. Util Environ Eff. 2020;1–19. doi:10.1080/15567036.2020.1769775
  • Yesilyurt MK. The examination of a compression-ignition engine powered by peanut oil biodiesel and diesel fuel in terms of energetic and exergetic performance parameters. Fuel. 2020;278:118319.
  • Zhang B, Hastings A, Clifton‐Brown JC, et al. Modeled spatial assessment of biomass productivity and technical potential of Miscanthus × giganteus, Panicum virgatum L., and Jatropha on marginal land in China. GCB Bioenergy. 2020;12(5):328–345.
  • Munir N, Hasnain M, Roessner U, et al. Strategies in improving plant salinity resistance and use of salinity resistant plants for economic sustainability. Crit Rev Environ Sci Technol. 2021;52:1–47.
  • Hasnain M, Munir N, Siddiqui ZS, et al. Integral approach for the evaluation of sugar cane Bio-Waste molasses and effects on algal lipids and biodiesel production. Waste Biomass Valor. 2022;1–20. doi:10.1007/s12649-022-01864-0
  • Chamola R, Gupta A, Chauhan VS, et al. Direct transesterification for biodiesel extraction from micro-algal biomass: a review. Int J Appl Eng Res. 2020;14:180–184.
  • El Shenawy EA, Elkelawy M, Bastawissi HA-E, et al. Effect of cultivation parameters and heat management on the algae species growth conditions and biomass production in a continuous feedstock photobioreactor. Renew Energy. 2020;148:807–815.
  • Naveen R, Revankar PP, Rajanna S. Integration of renewable energy systems for optimal energy needs-a review. Int J Renew Energy Res. 2020;10:727–742.
  • Hirooka S, Tomita R, Fujiwara T, et al. Efficient open cultivation of cyanidialean red algae in acidified seawater. Sci Rep. 2020;10:1–12.
  • Negi S, Perrine Z, Friedland N, et al. Light regulation of light‐harvesting antenna size substantially enhances photosynthetic efficiency and biomass yield in green algae. Plant J. 2020;103(2):584–603.
  • Wang S, Liu S, Wang J, et al. Simultaneous changes in seed size, oil content and protein content driven by selection of sweet homologues during soybean domestication. Natl Sci Rev. 2020;7(11):1776–1786.
  • Tan X-B, Meng J, Tang Z, et al. Optimization of algae mixotrophic culture for nutrients recycling and biomass/lipids production in anaerobically digested waste sludge by various organic acids addition. Chemosphere. 2020;244:125509.
  • Yan P, Guo J, Zhang P, et al. The role of morphological changes in algae adaptation to nutrient stress at the single-cell level. Sci Total Environ. 2021;754:142076.
  • Radha S, Dharani RS, Devi GS, et al. Screening and characterization of high lipid accumulating microalga Ankistrodesmus sp. from freshwater environment, 2019.
  • Li P, Sun X, Sun X, et al. Response of lipid productivity to photosynthesis of Chlorella vulgaris under various nutrient stress modes. J Renew Sustain Energy. 2020;12:56102.
  • Matsui H, Shiozaki K, Okumura Y, et al. Effects of phosphorous deficiency of a microalga Nannochloropsis oculata on its fatty acid profiles and intracellular structure and the effectiveness in rotifer nutrition. Algal Res. 2020;49:101905.
  • Darki BZ, Seyfabadi J, Fayazi S. Effect of nutrients on total lipid content and fatty acids profile of Scenedesmus obliquus. Brazilian Arch Biol Technol. 2017;60:2017160304.
  • Mathimani T, Sekar M, Shanmugam S, et al. Relative abundance of lipid types among Chlorella sp. and Scenedesmus sp. and ameliorating homogeneous acid catalytic conditions using Central composite design (CCD) for maximizing fatty acid methyl ester yield. Sci Total Environ. 2021;771:144700.
  • Ansari FA, Shekh AY, Gupta SK, et al. Microalgae for biofuels: applications, process constraints and future needs. In: Algal biofuels. Springer; 2017. pp. 57–76.
  • Singh P, Guldhe A, Kumari S, et al. Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochem Eng J. 2015;94:22–29.
  • Hasnain M, Abideen Z, Anthony Dias D, et al. Utilization of saline waterenhances lipid accumulation in green microalgae for the sustainable production of biodiesel. BioEnergy Res. 2022;1–14.
  • Sharif N, Munir N, Hasnain M, et al. Environmental impacts of ethanol production system. In: Sustainable ethanol and climate change. Springer; 2021. p. 205–223.
  • BenMoussa-Dahmen I, Chtourou H, Rezgui F, et al. Salinity stress increases lipid, secondary metabolites and enzyme activity in amphora subtropica and Dunaliella sp. for biodiesel production. Bioresour Technol. 2016;218:816–825.
  • Liu J, Qiu Y, He L, et al. Effect of iron and phosphorus on the microalgae growth in co-culture. Arch Microbiol. 2020;1–8.
  • Zhu S, Huang W, Xu J, et al. Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour Technol. 2014;152:292–298.
  • Bajwa K, Bishnoi NR, Kirrolia A, et al. Response surface methodology as a statistical tool for optimization of physio-biochemical cellular components of microalgae Chlorella pyrenoidosa for biodiesel production. Appl Water Sci. 2019;9:1–16.
  • Singh TS, Rajak U, Samuel OD, et al. Optimization of performance and emission parameters of direct injection diesel engine fuelled with microalgae Spirulina (L.)–response surface methodology and full factorial method approach. Fuel. 2021;285:119103.
  • Jakhar AM, Aziz I, Kaleri AR, et al. Nano-fertilizers: a sustainable technology for improving crop nutrition and food security. NanoImpact. 2022;27:100411.
  • Priharto N, Ronsse F, Prins W, et al. Experimental studies on a two-step fast pyrolysis-catalytic hydrotreatment process for hydrocarbons from microalgae (Nannochloropsis gaditana and Scenedesmus almeriensis). Fuel Process Technol. 2020;206:106466.
  • Sharif N, Munir N, Saleem F, et al. Mass cultivation of various algal species and their evaluation as a potential candidate for lipid production. Nat Prod Res. 2015;29(20):1938–1941.
  • Munir N, Hasnain M, Hanif M, et al. Fungal organisms: a check for harmful algal blooms. In: Freshwater mycology. Elsevier; 2022. p. 91–115.
  • Li P, Wen S, Sun K, et al. Structure and bioactivity screening of a low molecular weight ulvan from the green alga Ulothrix flacca. Mar Drugs. 2018;16(8):281.
  • Munir N, Sharif N, Naz S, et al. Harvesting and processing of microalgae biomass fractions for biodiesel production (a review). Sci Technol Dev. 2016;32(3):235–243.
  • Kumar D, Abdul Rub M, Akram M, Kabir-ud-Din. Interaction of chromium (III) complex of glycylphenylalanine with ninhydrin in aqueous and cetyltrimethylammonium bromide (CTAB) micellar media. Tenside Surfactants Deterg. 2014;51(2):157–163.
  • Uslu S. Optimization of diesel engine operating parameters fueled with palm oil-diesel blend: comparative evaluation between response surface methodology (RSM) and artificial neural network (ANN). Fuel. 2020;276:117990.
  • Leyva A, Quintana A, Sánchez M, et al. Rapid and sensitive anthrone–sulfuric acid assay in microplate format to quantify carbohydrate in biopharmaceutical products: method development and validation. Biologicals. 2008;36(2):134–141.
  • Dawson JM, Heatlie PL. Lowry method of protein quantification: evidence for photosensitivity. Anal Biochem. 1984;140(2):391–393.
  • Lichtenthaler HK, Buschmann C. Chlorophylls and carotenoids: measurement and characterization by UV‐VIS spectroscopy. Curr Protoc Food Anal Chem. 2001;1:F4–3.
  • Sharmila S, Rebecca LJ. GC-MS analysis of esters of fatty acid present in biodiesel produced from Cladophora vagabunda. J Chem Pharm Res. 2012;4:4883–4887.
  • Islam MA, Magnusson M, Brown RJ, et al. Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles. Energies. 2013;6(11):5676–5702.
  • Tao R, Bair R, Lakaniemi A-M, et al. Use of factorial experimental design to study the effects of iron and sulfur on growth of Scenedesmus acuminatus with different nitrogen sources. J Appl Phycol. 2019;1–11.
  • Yuasa K, Shikata T, Ichikawa T, et al. Nutrient deficiency stimulates the production of superoxide in the noxious red-tide-forming raphidophyte Chattonella antiqua. Harmful Algae. 2020;99:101938.
  • Kajikawa M, Fukuzawa H. Algal autophagy is necessary for the regulation of carbon metabolism under nutrient deficiency. Front Plant Sci. 2020;11:36.
  • Liu Z-Y, Wang G-C, Zhou B-C. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol. 2008;99(11):4717–4722.
  • Anand J, Arumugam M. Enhanced lipid accumulation and biomass yield of Scenedesmus quadricauda under nitrogen starved condition. Bioresour Technol. 2015;188:190–194.
  • Konur O. Algal biomass production for biodiesel production: a review of the research, biodiesel fuels based edible nonedible feed wastes. Algae. 2021;695–717.
  • Dubey D, Dutta V. Nutrient enrichment in lake ecosystem and its effects on algae and macrophytes. In: Environmental concerns and sustainable development. Springer; 2020. p. 81–126.
  • Koutra E, Kopsahelis A, Maltezou M, et al. Effect of organic carbon and nutrient supplementation on the digestate-grown microalga, Parachlorella kessleri. Bioresour Technol. 2019;294:122232.
  • Bews E, Booher L, Polizzi T, et al. Effects of salinity and nutrients on metabolism and growth of Ulva lactuca: implications for bioremediation of coastal watersheds. Mar Pollut Bull. 2021;166:112199.
  • Park M-H, Park C-H, Sim YB, et al. Response of Scenedesmus quadricauda (Chlorophyceae) to salt stress considering nutrient enrichment and intracellular proline accumulation. IJERPH. 2020;17(10):3624.
  • Zarrinmehr MJ, Farhadian O, Heyrati FP, et al. Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis galbana. Egypt J Aquat Res. 2020;46(2):153–158.
  • Zhu S, Wang Y, Huang W, et al. Enhanced accumulation of carbohydrate and starch in Chlorella zofingiensis induced by nitrogen starvation. Appl Biochem Biotechnol. 2014;174(7):2435–2445.
  • Roopnarain A, Gray VM, Sym SD. Phosphorus limitation and starvation effects on cell growth and lipid accumulation in Isochrysis galbana U4 for biodiesel production. Bioresour Technol. 2014;156:408–411.
  • Richmond A. Cell response to environmental factors. In: CRC Handbook of Microalgal Mass Culture. Boca Raton: CRC Press; 2017. p. 69–100.
  • Catone CM, Ripa M, Geremia E, et al. Bio-products from algae-based biorefinery on wastewater: a review. J Environ Manage. 2021;293:112792.
  • Kaplan D, Richmond AE, Dubinsky Z, et al. Algal nutrition. In: CRC Handbook of Microalgal Mass Culture. Boca Raton: CRC Press; 2017. pp. 147–198.
  • Ma R, Zhao X, Ho S-H, et al. Co-production of lutein and fatty acid in microalga Chlamydomonas sp. JSC4 in response to different temperatures with gene expression profiles. Algal Res. 2020;47:101821.
  • Romero N, Visentini FF, Márquez VE, et al. Physiological and morphological responses of green microalgae Chlorella vulgaris to silver nanoparticles. Environ Res. 2020;189:109857.
  • Sandhya SV, Vijayan KK. Biogenesis of silver nanoparticles by marine bacteria Labrenzia sp. Mab 26 associated with Isochrysis galbana. Curr Sci. 2020;119.
  • Xu S, Elsayed M, Ismail GA, et al. Evaluation of bioethanol and biodiesel production from Scenedesmus obliquus grown in biodiesel waste glycerol: a sequential integrated route for enhanced energy recovery. Energy Convers Manag. 2019;197:111907.
  • Shen X-F, Chu F-F, Lam PKS, et al. Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation. Water Res. 2015;81:294–300.
  • Yaakob MA, Mohamed R, Al-Gheethi A, et al. Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: an overview. Cells. 2021;10(2):393.
  • Yang T, Li H, Tai Y, et al. Transcriptional regulation of amino acid metabolism in response to nitrogen deficiency and nitrogen forms in tea plant root (Camellia Sinensis L). Sci Rep. 2020;10:1–16.
  • Sun X, Cao Y, Xu H, et al. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour Technol. 2014;155:204–212.
  • Arora N, Laurens LML, Sweeney N, et al. Elucidating the unique physiological responses of halotolerant Scenedesmus sp. cultivated in sea water for biofuel production. Algal Res. 2019;37:260–268.
  • Converti A, Casazza AA, Ortiz EY, et al. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process Process Intensif. 2009;48(6):1146–1151.
  • Adegoke TV, Osho A, Palmer OG, et al. Production of biodiesel from green alga Oedogonium capillare. J Chem Environ Biol Eng. 2018;2:70.
  • Dahmen I, Chtourou H, Jebali A, et al. Optimisation of the critical medium components for better growth of Picochlorum sp. and the role of stressful environments for higher lipid production. J Sci Food Agric. 2014;94(8):1628–1638.
  • Zhao L-S, Li K, Wang Q-M, et al. Nitrogen starvation impacts the photosynthetic performance of Porphyridium cruentum as revealed by chlorophyll a fluorescence. Sci Rep. 2017;7:1–11.
  • Clements CS, Burns AS, Stewart FJ, et al. Seaweed-coral competition in the field: effects on coral growth, photosynthesis and microbiomes require direct contact. Proc Biol Sci. 2020;287(1927):20200366.
  • Yue Q, He X, Yan N, et al. Photodynamic control of harmful algal blooms by an ultra-efficient and degradable AIEgen-based photosensitizer. Chem Eng J. 2020;127890.
  • Diprat AB, Thys RCS, Rodrigues E, et al. Chlorella sorokiniana: a new alternative source of carotenoids and proteins for gluten-free bread. LWT. 2020;134:109974.
  • Shekh AY, Shrivastava P, Gupta A, et al. Biomass and lipid enhancement in Chlorella sp. with emphasis on biodiesel quality assessment through detailed FAME signature. Bioresour Technol. 2016;201:276–286.
  • Okcu GD. The impact of nitrogen starvation on the dynamics of lipid and biomass production in Scenedesmus sp. Environ Res Technol. 2019;2:158–170.
  • Azizi S, Bayat B, Tayebati H, et al. Nitrate and phosphate removal from treated wastewater by Chlorella vulgaris under various light regimes within membrane flat plate photobioreactor. Environ Prog Sustain Energy. 2020;40:e13519.
  • Atzori G, Nissim WG, Rodolfi L, et al. Algae and bioguano as promising source of organic fertilizers. J Appl Phycol. 2020;32(6):3971–3981.
  • Rahman A, Agrawal S, Nawaz T, et al. A review of algae-based produced water treatment for biomass and biofuel production. Water. 2020;12(9):2351.
  • Yeesang C, Cheirsilp B. Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour Technol. 2011;102(3):3034–3040.
  • Koberg M, Cohen M, Ben-Amotz A, et al. Bio-diesel production directly from the microalgae biomass of nannochloropsis by microwave and ultrasound radiation. Bioresour Technol. 2011;102(5):4265–4269.
  • Xie T, Xia Y, Zeng Y, et al. Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: over-compensation strategy. Bioresour Technol. 2017;233:247–255.
  • Zhao X-C, Tan X-B, Yang L-B, et al. Cultivation of Chlorella pyrenoidosa in anaerobic wastewater: the coupled effects of ammonium, temperature and pH conditions on lipids compositions. Bioresour Technol. 2019;284:90–97.
  • Li S, Tao Y, Dao G-H, et al. Synergetic suppression effects upon the combination of UV-C irradiation and berberine on Microcystis aeruginosa and Scenedesmus obliquus in reclaimed water: effectiveness and mechanisms. Sci Total Environ. 2020;744:140937.
  • Bazarnova YG, Kuznetsova T, Trukhina E. Aquabiotechnology of directed cultivation of microalgae Chlorella sorokiniana biomass. IOP Conf Ser Earth Environ Sci. 2019;288:12037.
  • Prathima A, Karthikeyan S. Characteristics of micro-algal biofuel from Botryococcus braunii, energy sources, part a recover. Util Environ Eff. 2017;39(2):206–212.
  • Bélanger-Lépine F, Tremblay A, Huot Y, et al. Cultivation of an algae-bacteria consortium in wastewater from an industrial park: effect of environmental stress and nutrient deficiency on lipid production. Bioresour Technol. 2018;267:657–665.
  • Fu L, Cui X, Li Y, et al. Excessive phosphorus enhances Chlorella regularis lipid production under nitrogen starvation stress during glucose heterotrophic cultivation. Chem Eng J. 2017;330:566–572.
  • Hong ME, Yu BS, Patel AK, et al. Enhanced biomass and lipid production of Neochloris oleoabundans under high light conditions by anisotropic nature of light-splitting CaCO3 crystal. Bioresour Technol. 2019;287:121483.
  • Singh TS, Rajak U, Dasore A, et al. Performance and ecological parameters of a diesel engine fueled with diesel and plastic pyrolyzed oil (PPO) at variable working parameters. Environ Technol Innov. 2021;22:101491.
  • Skorupskaite V, Makareviciene V, Ubartas M, et al. Green algae Ankistrodesmus fusiformis cell disruption using different modes. Biomass Bioenergy. 2017;107:311–316.
  • Derakhshandeh M, Atici T, Tezcan Un U. Evaluation of wild-type microalgae species biomass as carbon dioxide sink and renewable energy resource. Waste Biomass Valor. 2021;12(1):105–121.
  • Islam MA, Ethiraj B, Cheng CK, et al. Electrogenic and antimethanogenic properties of Bacillus cereus for enhanced power generation in anaerobic sludge-driven microbial fuel cells. Energy Fuels. 2017;31(6):6132–6139.
  • Hussain J, Wang X, Sousa L, et al. Using non-metric multi-dimensional scaling analysis and multi-objective optimization to evaluate green algae for production of proteins, carbohydrates, lipids, and simultaneously fix carbon dioxide. Biomass Bioenergy. 2020;141:105711.
  • Firemichael D, Hussen A, Abebe W. Production and characterization of biodiesel and glycerine pellet from macroalgae strain: Cladophora glomerata. Bull Chem Soc Eth. 2020;34(2):249–258.
  • Mathimani T, Kumar TS, Chandrasekar M, et al. Assessment of fuel properties, engine performance and emission characteristics of outdoor grown marine Chlorella vulgaris BDUG 91771 biodiesel. Renew Energy. 2017;105:637–646.
  • Dharmaprabhakaran T, Karthikeyan S, Periyasamy M, et al. Emission analysis of CuO2 nanoparticle addition with blend of botryococcus braunii algae biodiesel on CI engine. Mater Today Proc. 2020;33:2897–2900.
  • Cheng F, Jarvis JM, Yu J, et al. Bio-crude oil from hydrothermal liquefaction of wastewater microalgae in a pilot-scale continuous flow reactor. Bioresour Technol. 2019;294:122184.
  • Vo HNP, Ngo HH, Guo W, et al. Microalgae for saline wastewater treatment: a critical review. Crit Rev Environ Sci Technol. 2020;50(12):1224–1265.
  • Nagarajan D, Kusmayadi A, Yen H-W, et al. Current advances in biological swine wastewater treatment using microalgae-based processes. Bioresour Technol. 2019;289:121718.
  • Javed F, Aslam M, Rashid N, et al. Microalgae-based biofuels, resource recovery and wastewater treatment: a pathway towards sustainable biorefinery. Fuel. 2019;255:115826.
  • Wollmann F, Dietze S, Ackermann J, et al. Microalgae wastewater treatment: biological and technological approaches. Eng Life Sci. 2019;19(12):860–871.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.