213
Views
1
CrossRef citations to date
0
Altmetric
Review

Overview of microwave-assisted transesterification technology for biodiesel production with bibliometric indicators

ORCID Icon
Pages 119-135 | Received 24 Mar 2022, Accepted 24 Jul 2022, Published online: 04 Aug 2022

References

  • Motasemi F, Ani F. A review on microwave-assisted production of biodiesel. Renew Sustain Energy Rev. 2012;16(7):4719–4733.
  • Halek F, Delavari A, Kavousi-rahim A. Production of biodiesel as a renewable energy source from castor oil. Clean Technol Environ Policy. 2013;15(6):1063–1068.
  • Qu T, Niu S, Gong Z, et al. Wollastonite decorated with calcium oxide as heterogeneous transesterification catalyst for biodiesel production: optimized by response surface methodology. Renew Energy. 2020;159:873–884.
  • Chuah LF, Klemeš JJ, Yusup S, et al. A review of cleaner intensification technologies in biodiesel production. J Cleaner Prod. 2017;146:181–193.
  • Müller TE. Biodiesel production systems: reactor technologies. Biodiesel: Springer; 2019. p. 15–25.
  • Gupta AR, Rathod VK. Calcium diglyceroxide catalyzed biodiesel production from waste cooking oil in the presence of microwave: optimization and kinetic studies. Renew Energy. 2018;121:757–767.
  • Yari N, Mostafaei M, Naderloo L, et al. Energy indicators for microwave-assisted biodiesel production from waste fish oil. Energy Sources Part A. 2022;44(1):2208–2212.
  • Khedri B, Mostafaei M, Ardebili SMS. Flow-mode synthesis of biodiesel under simultaneous microwave–magnetic irradiation. Chin J Chem Eng. 2019;27(10):2551–2559.
  • Mostafaei M, Javadikia H, Naderloo L. Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS). Energy. 2016;115:626–636.
  • Lidström P, Tierney J, Wathey B, et al. Microwave assisted organic synthesis - A review. Tetrahedron. 2001;57(45):9225–9283.
  • Rokni K, Mostafaei M, Soufi MD, et al. Microwave-assisted intensification of transesterification reaction for biodiesel production from Camelina oil: optimization by Box-Behnken design. Bioresour Technol Rep. 2022;17:100928.
  • Thoai DN, Tongurai C, Prasertsit K, et al. Review on biodiesel production by two-step catalytic conversion. Biocatal Agric Biotechnol. 2019;18:101023.
  • Khedri B, Mostafaei M, Safieddin Ardebili SM. A review on microwave-assisted biodiesel production. Energy Sources Part A. 2019;41(19):2377–2395.
  • Patil PD, Gude VG, Camacho LM, et al. Microwave-assisted catalytic transesterification of Camelina sativa oil. Energy Fuels. 2010;24(2):1298–1304.
  • Nayak SN, Bhasin CP, Nayak MG. A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems. Renew Energy. 2019;143:1366–1387.
  • Azcan N, Danisman A. Alkali catalyzed transesterification of cottonseed oil by microwave irradiation. Fuel. 2007;86(17–18):2639–2644.
  • Azcan N, Danisman A. Microwave assisted transesterification of rapeseed oil. Fuel. 2008;87(10–11):1781–1788.
  • Da Rós PCM, de Castro HF, Carvalho AKF, et al. Microwave-assisted enzymatic synthesis of beef tallow biodiesel. J Ind Microbiol Biotechnol. 2012;39(4):529–536.
  • Jaliliannosrati H, Amin NAS, Talebian-Kiakalaieh A, et al. Microwave assisted biodiesel production from jatropha curcas L. seed by two-step in situ process: optimization using response surface methodology. Bioresour Technol. 2013;136:565–573.
  • Liao C-C, Chung T-W. Optimization of process conditions using response surface methodology for the microwave-assisted transesterification of Jatropha oil with KOH impregnated CaO as catalyst. Chem Eng Res Des. 2013;91(12):2457–2464.
  • Liu W, Yin P, Liu X, et al. Microwave assisted esterification of free fatty acid over a heterogeneous catalyst for biodiesel production. Energy Convers Manage. 2013;76:1009–1014.
  • Patil P, Gude VG, Pinappu S, et al. Transesterification kinetics of Camelina sativa oil on metal oxide catalysts under conventional and microwave heating conditions. Chem Eng J. 2011;168(3):1296–1300.
  • Zhang H, Ding J, Zhao Z. Microwave assisted esterification of acidified oil from waste cooking oil by CERP/PES catalytic membrane for biodiesel production. Bioresour Technol. 2012;123:72–77.
  • Nomanbhay S, Ong MY. A review of microwave-assisted reactions for biodiesel production. Bioengineering (Basel). 2017;4(2):57.
  • Sajjadi B, Abdul Aziz AR, Ibrahim S. Investigation, modelling and reviewing the effective parameters in microwave-assisted transesterification. Renew Sustain Energy Rev. 2014;37:762–777.
  • Yan Y, Li X, Wang G, et al. Biotechnological preparation of biodiesel and its high-valued derivatives: a review. Appl Energy. 2014;113:1614–1631.
  • El Sherbiny SA, Refaat AA, El Sheltawy ST. Production of biodiesel using the microwave technique. J Adv Res. 2010;1(4):309–314.
  • Yang Y, Reniers G, Chen G, et al. A bibliometric review of laboratory safety in universities. Saf Sci. 2019;120:14–24.
  • Linnenluecke MK, Marrone M, Singh AK. Conducting systematic literature reviews and bibliometric analyses. Aust J Manag. 2020;45(2):175–194.
  • Pal K, Anis A, Nayak AK, et al. Scientometric review of hydrogel-based ocular drug delivery systems. In: Advances and challenges in pharmaceutical technology. San Diego, USA: Academic Press; 2021. p. 517–537.
  • Zhang X. A bibliometric analysis of second language acquisition between 1997 and 2018. Stud Second Lang Acquis. 2020;42(1):199–222.
  • Ellegaard O, Wallin JA. The bibliometric analysis of scholarly production: how great is the impact? Scientometrics. 2015;105(3):1809–1831.
  • Sweileh WM. Bibliometric analysis of peer-reviewed literature on antimicrobial stewardship from 1990 to 2019. Global Health. 2021;17(1):1.
  • Chen X, Zou D, Xie H, et al. Past, present, and future of smart learning: a topic-based bibliometric analysis. Int J Educ Technol High Educ. 2021;18(1):1–29.
  • Cabezas-Clavijo A, Torres-Salinas D. Bibliometric reports for institutions: best practices in a responsible metrics scenario. Front Res Metr Anal. 2021;6:1–8.
  • Holden G, Rosenberg G, Barker K. Tracing thought through time and space. Soc Work Health Care. 2005;41(3–4):1–34.
  • Ghamari H, Golshany N, Naghibi Rad P, et al. Neuroarchitecture assessment: an overview and bibliometric analysis. Eur J Investig Health Psychol Educ. 2021;11(4):1362–1387.
  • Cobo MJ, López-Herrera AG, Herrera-Viedma E, et al. An approach for detecting, quantifying, and visualizing the evolution of a research field: a practical application to the fuzzy sets theory field. J Informetr. 2011;5(1):146–166.
  • Polat ZA, Alkan M, Paulsson J, et al. Global scientific production on LADM-based research: a bibliometric analysis from 2012 to 2020. Land Use Policy. 2022;112:105847.
  • Kokol P, Blažun Vošner H, Završnik J. Application of bibliometrics in medicine: a historical bibliometrics analysis. Health Info Libr J. 2021;38(2):125–138.
  • Boateng SL. Influencer marketing: a bibliometric analysis of 10 years of Scopus-Indexed research. In: Digital innovations, business and society in Africa. Cham, Switzerland: Springer; 2022. p. 139–164.
  • Foo KY, Hameed BH. Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside: influence of operational parameters. Bioresour Technol. 2012;103(1):398–404.
  • Liu J, Takada R, Karita S, et al. Microwave-assisted pretreatment of recalcitrant softwood in aqueous glycerol. Bioresour Technol. 2010;101(23):9355–9360.
  • Foo KY, Hameed BH. Adsorption characteristics of industrial solid waste derived activated carbon prepared by microwave heating for methylene blue. Fuel Process Technol. 2012;99:103–109.
  • Reddy HK, Muppaneni T, Sun Y, et al. Subcritical water extraction of lipids from wet algae for biodiesel production. Fuel. 2014;133:73–81.
  • Franca AS, Oliveira LS, Nunes AA, et al. Microwave assisted thermal treatment of defective coffee beans press cake for the production of adsorbents. Bioresour Technol. 2010;101(3):1068–1074.
  • Foo KY, Hameed BH. Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular activated carbon by microwave induced KOH activation. Bioresour Technol. 2013;130:696–702.
  • Amais RS, Donati GL, Schiavo D, et al. A simple dilute-and-shoot procedure for Si determination in diesel and biodiesel by microwave-induced plasma optical emission spectrometry. Microchem J. 2013;106:318–322.
  • Wang Y, Dai L, Wang R, et al. Hydrocarbon fuel production from soapstock through fast microwave-assisted pyrolysis using microwave absorbent. J Anal Appl Pyrolysis. 2016;119:251–258.
  • Teng WK, Ngoh GC, Yusoff R, et al. Microwave-assisted transesterification of industrial grade crude glycerol for the production of glycerol carbonate. Chem Eng J. 2016;284:469–477.
  • Aranda PR, Pacheco PH, Olsina RA, et al. Total and inorganic mercury determination in biodiesel by emulsion sample introduction and FI-CV-AFS after multivariate optimization. J Anal At Spectrom. 2009;24(10):1441–1445.
  • Amais RS, Amaral CDB, Fialho LL, et al. Determination of P, S and Si in biodiesel, diesel and lubricating oil using ICP-MS/MS. Anal Methods. 2014;6(13):4516–4520.
  • Gole VL, Gogate PR. Intensification of glycerolysis reaction of higher free fatty acid containing sustainable feedstock using microwave irradiation. Fuel Process Technol. 2014;118:110–116.
  • van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523–538.
  • van Eck NJ, Waltman L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics. 2017;111(2):1053–1070.
  • Andreo-Martínez P, Ortiz-Martínez VM, García-Martínez N, et al. Production of biodiesel under supercritical conditions: state of the art and bibliometric analysis. Appl Energy. 2020;264:114753.
  • Ma X, Gao M, Gao Z, et al. Past, current, and future research on microalga-derived biodiesel: a critical review and bibliometric analysis. Environ Sci Pollut Res Int. 2018;25(11):10596–10610.
  • Zhang M, Gao Z, Zheng T, et al. A bibliometric analysis of biodiesel research during 1991–2015. J Mater Cycles Waste Manag. 2018;20(1):10–18.
  • Chen C, Chitose A, Kusadokoro M, et al. Sustainability and challenges in biodiesel production from waste cooking oil: an advanced bibliometric analysis. Energy Rep. 2021;7:4022–4034.
  • Yu D, Meng S. An overview of biomass energy research with bibliometric indicators. Energy Environ. 2018;29(4):576–590.
  • Mao G, Zou H, Chen G, et al. Past, current and future of biomass energy research: a bibliometric analysis. Renew Sustain Energy Rev. 2015;52:1823–1833.
  • Rajeswari S, Baskaran D, Saravanan P, et al. Production of ethanol from biomass–recent research, scientometric review and future perspectives. Fuel. 2022;317:123448.
  • Corsaro A, Chiacchio U, Pistarà V, et al. Microwave-assisted chemistry of carbohydrates. COC. 2004;8(6):511–538.
  • IMF. World economic outlook database, April 2021. International monetary fund. 2021. Accessed 17 January 2022.
  • Rashidi NA, Chai YH, Yusup S. Biomass energy in Malaysia: current scenario, policies, and implementation challenges. Bioenergy Res. 2022.
  • Chin M. Biofuels in Malaysia: an analysis of the legal and institutional framework. CIFOR. 2011.
  • IEA. Biofuel production by country/region and fuel type, 2016–2022. Paris: IEA; 2021.
  • Dominković DF, Weinand JM, Scheller F, et al. Reviewing two decades of energy system analysis with bibliometrics. Renew Sustain Energy Rev. 2022;153:111749.
  • Zhang S, Zu Y-G, Fu Y-J, et al. Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst. Bioresour Technol. 2010;101(3):931–936.
  • Lertsathapornsuk V, Pairintra R, Aryusuk K, et al. Microwave assisted in continuous biodiesel production from waste frying palm oil and its performance in a 100 kW diesel generator. Fuel Process Technol. 2008;89(12):1330–1336.
  • Khemthong P, Luadthong C, Nualpaeng W, et al. Industrial eggshell wastes as the heterogeneous catalysts for microwave-assisted biodiesel production. Catal Today. 2012;190(1):112–116.
  • Patil PD, Gude VG, Mannarswamy A, et al. Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions. Fuel. 2012;97:822–831.
  • Bundhoo ZMA. Microwave-assisted conversion of biomass and waste materials to biofuels. Renew Sustain Energy Rev. 2018;82:1149–1177.
  • Li J, Fu Y-J, Qu X-J, et al. Biodiesel production from yellow horn (Xanthoceras sorbifolia Bunge.) seed oil using ion exchange resin as heterogeneous catalyst. Bioresour Technol. 2012;108:112–118.
  • Zuo D, Lane J, Culy D, et al. Sulfonic acid functionalized mesoporous SBA-15 catalysts for biodiesel production. Appl Catal, B. 2013;129:342–350.
  • Cheng J, Huang R, Li T, et al. Biodiesel from wet microalgae: extraction with hexane after the microwave-assisted transesterification of lipids. Bioresour Technol. 2014;170:69–75.
  • Kumar R, Ravi Kumar G, Chandrashekar N. Microwave assisted alkali-catalyzed transesterification of Pongamia pinnata seed oil for biodiesel production. Bioresour Technol. 2011;102(11):6617–6620.
  • Sharma AK, Sahoo PK, Singhal S, et al. Exploration of upstream and downstream process for microwave assisted sustainable biodiesel production from microalgae chlorella vulgaris. Bioresour Technol. 2016;216:793–800.
  • Capodaglio AG, Callegari A. Feedstock and process influence on biodiesel produced from waste sewage sludge. J Environ Manage. 2018;216:176–182.
  • Li J, Peng X, Luo M, et al. Biodiesel production from Camptotheca acuminata seed oil catalyzed by novel Brönsted–Lewis acidic ionic liquid. Appl Energy. 2014;115:438–444.
  • Azcan N, Yilmaz O. Microwave assisted transesterification of waste frying oil and concentrate methyl ester content of biodiesel by molecular distillation. Fuel. 2013;104:614–619.
  • Nayak MG, Vyas AP. Optimization of microwave-assisted biodiesel production from papaya oil using response surface methodology. Renew Energy. 2019;138:18–28.
  • Wahidin S, Idris A, Yusof NM, et al. Optimization of the ionic liquid-microwave assisted one-step biodiesel production process from wet microalgal biomass. Energy Convers Manage. 2018;171:1397–1404.
  • Hong IK, Jeon H, Kim H, et al. Preparation of waste cooking oil based biodiesel using microwave irradiation energy. J Ind Eng Chem. 2016;42:107–112.
  • Li Y, Ye B, Shen J, et al. Optimization of biodiesel production process from soybean oil using the sodium potassium tartrate doped zirconia catalyst under microwave chemical reactor. Bioresour Technol. 2013;137:220–225.
  • Huang R, Cheng J, Qiu Y, et al. Using renewable ethanol and isopropanol for lipid transesterification in wet microalgae cells to produce biodiesel with low crystallization temperature. Energy Convers Manage. 2015;105:791–797.
  • Rocha PD, Oliveira LS, Franca AS. Sulfonated activated carbon from corn cobs as heterogeneous catalysts for biodiesel production using microwave-assisted transesterification. Renew Energy. 2019;143:1710–1716.
  • Lieu T, Yusup S, Moniruzzaman M. Kinetic study on microwave-assisted esterification of free fatty acids derived from Ceiba pentandra Seed Oil. Bioresour Technol. 2016;211:248–256.
  • Nogueira BM, Carretoni C, Cruz R, et al. Microwave activation of enzymatic catalysts for biodiesel production. J Mol Catal B: Enzym. 2010;67(1–2):117–121.
  • Sun J, Wang M-H, Ho Y-S. A historical review and bibliometric analysis of research on estuary pollution. Mar Pollut Bull. 2012;64(1):13–21.
  • Garfield E. Key-words-plus takes you beyond title words. 2. Expanded journal coverage for current-contents-on-diskette includes social and behavioral-sciences. Curr Contents. 1990;33:5–9.
  • Lokman IM, Rashid U, Taufiq Yap YH, et al. Microwave‐assisted methyl ester production from palm fatty acid distillate over a heterogeneous carbon‐based solid acid catalyst. Chem Eng Technol. 2015;38(10):1837–1844.
  • Lokman IM, Rashid U, Zainal Z, et al. Microwave-assisted biodiesel production by esterification of palm fatty acid distillate. J Oleo Sci. 2014;63(9):ess14068–855.
  • Melo Júnior CAR, Albuquerque CER, Carneiro JSA, et al. Solid-acid-catalyzed esterification of oleic acid assisted by microwave heating. Ind Eng Chem Res. 2010;49(23):12135–12139.
  • Kumar R, Sethy A. Microwave assisted energy efficient biodiesel production from crude Pongamia pinnata (L.) oil using homogeneous catalyst. J Forest Environ Sci. 2015;31(1):1–6.
  • Hassan AA, Smith JD. Investigation of microwave-assisted transesterification reactor of waste cooking oil. Renew Energy. 2020;162:1735–1746.
  • Cancela Á, Maceiras R, Sánchez Á, et al. Transesterification of marine macroalgae using microwave technology. Energy Sources Part A. 2016;38(11):1598–1603.
  • Li T-F, Shen C, Zhang H-X, et al. Transesterification of Pistacia chinensis seed oil using a porous cellulose-based magnetic heterogeneous catalyst. Int J Green Energy. 2019;16(3):228–235.
  • Loy ACM, Quitain AT, Lam MK, et al. Development of high microwave-absorptive bifunctional graphene oxide-based catalyst for biodiesel production. Energy Convers Manage. 2019;180:1013–1025.
  • Hsiao M-C, Kuo J-Y, Hsieh S-A, et al. Optimized conversion of waste cooking oil to biodiesel using modified calcium oxide as catalyst via a microwave heating system. Fuel. 2020;266:117114.
  • Mohammed AL, Abdulhameed AF, Musa U, et al. Review of heterogenous microwave irradiation assisted transesterification of vegetable oil using calcium oxide derived from renewable sources as catalyst. ATBU J Sci Technol Educ. 2018;6:27–52.
  • Qadariyah L, Ansori A, Wibowo S, et al. Biodiesel production from calophyllum inophyllum L oil using microwave with calcium carbonate catalyst. IOP Conf Ser: Mater Sci Eng. 2019;543(1):012072.
  • Verziu M, Cojocaru B, Hu J, et al. Sunflower and rapeseed oil transesterification to biodiesel over different nanocrystalline MgO catalysts. Green Chem. 2008;10(4):373–381.
  • Ashok A, Kennedy LJ, Vijaya JJ, et al. Optimization of biodiesel production from waste cooking oil by magnesium oxide nanocatalyst synthesized using coprecipitation method. Clean Technol Environ Policy. 2018;20(6):1219–1231.
  • Khan HM, Iqbal T, Mujtaba M, et al. Microwave assisted biodiesel production using heterogeneous catalysts. Energies. 2021;14(23):8135.
  • Lau P-C, Kwong T-L, Yung K-F. Effective heterogeneous transition metal glycerolates catalysts for one-step biodiesel production from low grade non-refined jatropha oil and crude aqueous bioethanol. Sci Rep. 2016;6:23822.
  • Sharma A, Kodgire P, Kachhwaha SS. Biodiesel production from waste cotton-seed cooking oil using microwave-assisted transesterification: optimization and kinetic modeling. Renew Sustain Energy Rev. 2019;116:109394.
  • Nayak MG, Vyas AP. Parametric study and optimization of microwave assisted biodiesel synthesis from Argemone Mexicana oil using response surface methodology. Chem Eng Process - Process Intensif. 2022;170:108665.
  • Kumar D, Kumar G, Johari R, et al. Fast, easy ethanomethanolysis of Jatropha curcus oil for biodiesel production due to the better solubility of oil with ethanol in reaction mixture assisted by ultrasonication. Ultrason Sonochem. 2012;19(4):816–822.
  • Thakkar K, Shah K, Kodgire P, et al. Experimental investigation of in-situ biodiesel production from castor seeds (Ricinus communis) using combination of microwave and ultrasound intensification. Singapore: Springer; 2020. p. 435–446.
  • Vasantha V, Serrao RS, D’Souza JQ. Microwave assisted transesterification of waste cooking oil over modified forms of zirconia coated on honeycomb monolith. Indian J Chem-Sect A (IJCA). 2020;56:373–378.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.