211
Views
0
CrossRef citations to date
0
Altmetric
Articles

Calorific value prediction models of processed refuse derived fuel 3 using ultimate analysis

, &
Pages 69-78 | Received 08 Mar 2022, Accepted 21 Aug 2022, Published online: 04 Sep 2022

References

  • Kaza S, Yao LC, Bhada-Tata, P, et al. What a waste 2.0: a global snapshot of solid waste management to 2050. Washington (DC): World Bank. https://doi.org/10.1596/978-1-4648-1329-0
  • Gouri K, Vishnu B, Sun SH, et al. Carbon footprint of municipal solid waste in greater Bangalore. Proceedings of the LAKE 2012: National Conference on Conservation and Management of Wetland Ecosystems; 2012 Nov 6–9; Kottayam, Kerala: School of Environmental Sciences, Mahatma Gandhi University; 2012. pp. 1–8. http://wgbis.ces.iisc.ac.in/energy/paper/lake2012_carbon_footprint/index.html.
  • Sarc R, Lorber KE. Production, quality and quality assurance of refuse derived fuels (RDFs). Waste Manag. 2013;33(9):1825–1834. https://doi.org/10.1016/j.wasman.2013.05.004.
  • Greenhouse gas emissions - Canada.ca. (n.d.). [2021 Apr 19]. Available from https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/greenhouse-gas-emissions.html.
  • Alter H. The history of refuse-derived fuels. Resour Conserv. 1987;15(4):251–275. https://doi.org/10.1016/0166-3097(87)90074-5.
  • Ashkiki AR, Felske C, McCartney D. Impacts of seasonal variation and operating parameters on double-stage trommel performance. Waste Manage (Oxford). 2019;86:36–48. https://doi.org/10.1016/j.wasman.2019.01.026.
  • Vargas-Moreno JM, Callejón-Ferre AJ, Pérez-Alonso J, et al. A review of the mathematical models for predicting the heating value of biomass materials. Renew Sustain Energy Rev. 2012;16(5):3065–3083. https://doi.org/10.1016/j.rser.2012.02.054.
  • Channiwala SA, Parikh PP. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel. 2002;81(8):1051–1063. https://doi.org/10.1016/S0016-2361(01)00131-4.
  • Yin C-Y. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel. 2011;90(3):1128–1132. https://www.sciencedirect.com/science/article/abs/pii/S0016236110006460.
  • Xing J, Luo K, Wang H, et al. A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches. Energy. 2019;188:116077. https://doi.org/10.1016/j.energy.2019.116077.
  • Hosokai S, Matsuoka K, Kuramoto K, et al. Modification of dulong's formula to estimate heating value of gas, liquid and solid fuels. Fuel Process Technol. 2016;152:399–405. https://doi.org/10.1016/j.fuproc.2016.06.040.
  • Boumanchar I, Chhiti Y, M'hamdi Alaoui FE, et al. Municipal solid waste higher heating value prediction from ultimate analysis using multiple regression and genetic programming techniques. Waste Manag Res. 2019;37(6):578–589. https://doi.org/10.1177/0734242X18816797.
  • Ghugare SB, Tiwary S, Elangovan V, et al. Prediction of higher heating value of solid biomass fuels using artificial intelligence formalisms. Bioenerg Res. 2014;7(2):681–692. https://doi.org/10.1007/s12155-013-9393-5.
  • Elmaz F, Yücel Ö, Mutlu AY. Machine learning based approach for predicting of higher heating values of solid fuels using proximity and ultimate analysis. Int J Adv Eng Pure Sci. 2020;32(2):145–151. https://doi.org/10.7240/jeps.558378.
  • Ighalo JO, Adeniyi AG, Marques G. Application of linear regression algorithm and stochastic gradient descent in a machine-learning environment for predicting biomass higher heating value. Biofuels Bioprod Bioref. 2020;14(6):1286–1295. https://doi.org/10.1002/bbb.2140.
  • Ozyuguran A, Akturk A, Yaman S. Optimal use of condensed parameters of ultimate analysis to predict the calorific value of biomass. Fuel. 2018;214(December 2016):640–646. https://doi.org/10.1016/j.fuel.2017.10.082.
  • Alves O, Gonçalves M, Brito P, et al. 2018. Modelling higher heating value of different separated fractions from municipal and construction and demolition wastes ECOS 2018. Proceedings of the 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems.
  • Wilson DL. Prediction of heat of combustion of solid wastes from ultimate analysis. Environ Sci Technol. 1972;6(13):1119–1121. http://dx.doi.org/10.1021/Es60072a011.
  • Meraz L, Domínguez A, Kornhauser I, Rojas F. A thermochemical concept- based equation to estimate waste combustion enthalpy from element composition. Fuel 2003;82:1499–507.
  • Kathiravale S. Modeling the heating value of Municipal Solid Waste. Fuel 2003;82:1119–25. http://dx.doi.org/10.1016/S0016-2361(03)00009-7
  • Reza B, Soltani A, Ruparathna R, et al. Environmental and economic aspects of production and utilization of RDF as alternative fuel in cement plants: a case study of metro vancouver waste management. Resour Conserv Recycl. 2013;81:105–114. https://doi.org/10.1016/j.resconrec.2013.10.009.
  • Shi H, Mahinpey N, Aqsha A, et al. (2016) Characterization, thermochemical conversion studies, and heating value modeling of municipal solid waste. Waste Management 48: 34–47. doi:10.1016/j.wasman.2015.09.036
  • Galhano dos Santos, R, Bordado JM. Design of simplified models for the estimation of higher heating value of refused derived fuels. Fuel. 2018;212(March 2017):431–436. https://doi.org/10.1016/j.fuel.2017.10.062.
  • Nhuchhen, DR, Afzal MT. HHV predicting correlations for torrefied biomass using proximate and ultimate analyses. Bioengineering. 2017;4(4):7. https://doi.org/10.3390/bioengineering4010007.
  • Rotter VS, Kost T, Winkler J, et al. Material flow analysis of RDF production processes. Waste Manag. 2004;24(10):1005–1021. https://doi.org/10.1016/j.wasman.2004.07.015.
  • Edo-Alcon N, Gallardo A, Colomer-Mendoza FJ. Characterization of SRF from MBT plants: influence of the input waste and of the processing technologies. Fuel Process Technol. 2016;153:19–e27. https://doi.org/10.1016/j.fuproc.2016.07.028.
  • Nasrullah M, Hurme M, Oinas P, et al. Influence of input waste feedstock on solid recovered fuel production in a mechanical treatment plant. Fuel Process Technol. 2017;163:35–e44. https://doi.org/10.1016/j.fuproc.2017.03.034.
  • Qian C, Li Q, Zhang Z, et al. Prediction of higher heating values of biochar from proximate and ultimate analysis. Fuel. 2020;265:116925. https://doi.org/10.1016/j.fuel.2019.116925.
  • Sheng, C, Azevedo JLT. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy. 2005;28(5):499–507. http://dx.doi.org/10.1016/j.biombioe.2004.11.008.
  • Tanguay-Rioux F, Legros R, Spreutels L. On the limits of empirical partition coefficients for modeling material recovery facility unit operations in municipal solid waste management. J Cleaner Prod. 2021;293:126016. https://doi.org/10.1016/j.jclepro.2021.126016.
  • Ip K, Testa M, Raymond A, et al. Performance evaluation of material separation in a material recovery facility using a network flow model. Resour Conserv Recycl. 2018;131:192–205. https://doi.org/10.1016/j.resconrec.2017.11.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.