733
Views
2
CrossRef citations to date
0
Altmetric
Articles

Potential of biofuels production from wheat straw biomass, current achievements and perspectives: a review

, , &
Pages 79-92 | Received 21 Apr 2022, Accepted 25 Aug 2022, Published online: 04 Sep 2022

References

  • de la Torre MJ, Moral A, Hernández MD, et al. Organosolv lignin for biofuel. Ind Crops Prod. 2013;45:58–63.
  • Nazarpour M, Taghizadeh-Alisaraei A, Asghari A, et al. Optimization of biohydrogen production from microalgae by response surface methodology (RSM). Energy. 2022;253:124059.
  • Mohammadnejad M, Ghazvini M, Mahlia TMI, et al. A review on energy scenario and sustainable energy in Iran. Renewable Sustainable Energy Rev. 2011;15(9):4652–4658.
  • Ghobadian B. Liquid biofuels potential and outlook in Iran. Renewable Sustainable Energy Rev. 2012;16(7):4379–4384.
  • Shahnouri SA, Taghizadeh-Alisaraei A, Abbaszadeh-Mayvan A, et al. Catalytic microwave pyrolysis of mushroom spent compost (MSC) biomass for bio-oil production and its life cycle assessment (LCA). Biomass Convers Biorefin. 2022.
  • Hosseini SE, Andwari AM, Wahid MA, et al. A review on green energy potentials in Iran. Renewable Sustainable Energy Rev. 2013;27:533–545.
  • Demirbas MF, Balat M, Balat H. Potential contribution of biomass to the sustainable energy development. Energy Convers Manage. 2009;50(7):1746–1760.
  • Tingting Liu T, Mcconkey B, Huffman T, et al. Potential and impacts of renewable energy production from agricultural biomass in Canada. Appl Energy. 2014;130:222–229.
  • Duku MH, Gu S, Hagan EB. A comprehensive review of biomass resources and biofuels potential in Ghana. Renewable Sustainable Energy Rev. 2011;15(1):404–415.
  • Vassilev SV, Vassileva CG, Vassilev VS. Advantages and disadvantages of composition and properties of biomass in comparison with coal: an overview. Fuel. 2015;158:330–350.
  • Fatih Demirbas M, Balat M, Balat H. Biowastes-to-biofuels. Energy Convers Manage. 2011;52(4):1815–1828.
  • Vassilev SV, Baxter D, Andersen LK, et al. An overview of the organic and inorganic phase composition of biomass. Fuel. 2012;94:1–33.
  • Vassilev SV, Baxter D, Andersen LK, et al. An overview of the chemical composition of biomass. Fuel. 2010;89(5):913–933.
  • Ji W, Shen Z, Wen Y. Hydrolysis of wheat straw by dilute sulfuric acid in a continuous mode. Chem Eng J. 2015;260:20–27.
  • Singh R, Shukla A, Tiwari S, et al. A review on deligni fi cation of lignocellulosic biomass for enhancement of ethanol production potential. Renewable Sustainable Energy Rev. 2014;32:713–728.
  • Kaparaju P, Serrano M, Thomsen AB, et al. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol. 2009;100(9):2562–2568.
  • Jurado M, Prieto A, Martínez-Alcalá Á, et al. Laccase detoxification of steam-exploded wheat straw for second generation bioethanol. Bioresour Technol. 2009;100(24):6378–6384.
  • Wang L, Littlewood J, Murphy RJ. Environmental sustainability of bioethanol production from wheat straw in the UK. Renewable Sustainable Energy Rev. 2013;28:715–725.
  • Okamoto K, Nitta Y, Maekawa N, et al. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus trametes hirsuta. Enzyme Microb Technol. 2011;48(3):273–277.
  • Roy P, Orikasa T, Tokuyasu K, et al. Evaluation of the life cycle of bioethanol produced from rice straws. Bioresour Technol. 2012;110:239–244.
  • Binod P, Sindhu R, Singhania RR, et al. Bioethanol production from rice straw: an overview. Bioresour Technol. 2010;101(13):4767–4774.
  • Weerasai K, Suriyachai N, Poonsrisawat A, et al. Sequential acid and alkaline pretreatment of rice straw for bioethanol fermentation. BioResources. 2014;9(4):5988–6001.
  • Singh R, Srivastava M, Shukla A. Environmental sustainability of bioethanol production from rice straw in India: a review. Renewable Sustainable Energy Rev. 2016;54:202–216.
  • Length F. Comparative study of biogas production from chemically-treated powdered and un-powdered rice husks. Environ Chem. 2011;3:75–79.
  • Yang L, Ge X, Wan C, et al. Progress and perspectives in converting biogas to transportation fuels. Renewable Sustainable Energy Rev. 2014;40:1133–1152.
  • Heeg K, Pohl M, Sontag M, et al. Microbial communities involved in biogas production from wheat straw as the sole substrate within a two-phase solid-state anaerobic digestion. Syst Appl Microbiol. 2014;37(8):590–600.
  • Liu L, Zhang T, Wan H, et al. Anaerobic co-digestion of animal manure and wheat straw for optimized biogas production by the addition of magnetite and zeolite. Energy Convers Manage. 2015;97:132–139.
  • Kaparaju P, Serrano M, Angelidaki I. Effect of reactor configuration on biogas production from wheat straw hydrolysate. Bioresour Technol. 2009;100(24):6317–6323.
  • Nkemka VN, Murto M. Biogas production from wheat straw in batch and UASB reactors: the roles of pretreatment and seaweed hydrolysate as a co-substrate. Bioresour Technol. 2013;128:164–172.
  • Taherdanak M, Zilouei H. Improving biogas production from wheat plant using alkaline pretreatment. Fuel. 2014;115:714–719.
  • Risberg K, Sun L, Levén L, et al. Biogas production from wheat straw and manure - Impact of pretreatment and process operating parameters. Bioresour Technol. 2013;149:232–237.
  • Fan Y-T, Zhang Y-H, Zhang S-F, et al. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol. 2006;97(3):500–505.
  • Yin Y, Wang J. Biohydrogen production using waste activated sludge disintegrated by gamma irradiation. Appl Energy. 2015;155:434–439.
  • Escamilla-Alvarado C, Ponce-Noyola MT, Poggi-Varaldo HM, et al. Energy analysis of in-series biohydrogen and methane production from organic wastes. Int J Hydrogen Energy. 2014;39(29):16587–16594.
  • Hawkes FR, Forsey H, Premier GC, et al. Fermentative production of hydrogen from a wheat flour industry co-product. Bioresour Technol. 2008;99(11):5020–5029.
  • Kim M, Yang Y, Morikawa-Sakura MS, et al. Hydrogen production by anaerobic co-digestion of rice straw and sewage sludge. Int J Hydrogen Energy. 2012;37(4):3142–3149.
  • Argun H, Kargi F. Bio-hydrogen production from ground wheat starch by continuous combined fermentation using annular-hybrid bioreactor. Renewable Energy. 2010;35(12):6170–6178.
  • Sagnak R, Kargi F, Kapdan IK. Bio-hydrogen production from acid hydrolyzed waste ground wheat by dark fermentation. Int J Hydrogen Energy. 2011;36(20):12803–12809.
  • Quéméneur M, Bittel M, Trably E, et al. Effect of enzyme addition on fermentative hydrogen production from wheat straw. Int J Hydrogen Energy. 2012;37(14):10639–10647.
  • Ozmihci S, Kargi F, Cakir A. Thermophilic dark fermentation of acid hydrolyzed waste ground wheat for hydrogen gas production. Int J Hydrogen Energy. 2011;36(3):2111–2117.
  • Pawar SS, Nkemka VN, Zeidan A A, et al. Biohydrogen production from wheat straw hydrolysate using Caldicellulosiruptor saccharolyticus followed by biogas production in a two-step uncoupled process. Int J Hydrogen Energy. 2013;38(22):9121–9130.
  • Nasirian N, Almassi M, Minaei S, et al. Development of a method for biohydrogen production from wheat straw by dark fermentation. Int J Hydrogen Energy. 2011;36(1):411–420.
  • Han W, Liu D-N, Li Y-F, et al. Utilization of wheat for biohydrogen production by a combination of solid-state fermentation and batch fermentation. Int J Hydrogen Energy. 2015;40(17):5849–5855.
  • Wu J, Upreti S, Ein-Mozaffari F. Ozone pretreatment of wheat straw for enhanced biohydrogen production. Int J Hydrogen Energy. 2013;38(25):10270–10276.
  • Cao GL, Xia XF, Zhao L, et al. Development of AFEX-based consolidated bioprocessing on wheat straw for biohydrogen production using anaerobic microflora. Int J Hydrogen Energy. 2013;38(35):15653–15659.
  • Kongjan P, Angelidaki I. Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration. Bioresour Technol. 2010;101(20):7789–7796.
  • Cheng J, Su H, Zhou J, et al. Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark- and photo-fermentation. Int J Hydrogen Energy. 2011;36(3):2093–2101.
  • Chang ACC, Tu YH, Huang MH, et al. Production by the anaerobic fermentation from acid hydrolyzed rice straw hydrolysate. Int J Hydrogen Energy. 2011;36(21):14280–14288.
  • Chen CC, Chuang YS, Lin CY, et al. Thermophilic dark fermentation of untreated rice straw using mixed cultures for hydrogen production. Int J Hydrogen Energy. 2012;37(20):15540–15546.
  • Liu C-M, Chu C-Y, Lee W-Y, et al. Biohydrogen production evaluation from rice straw hydrolysate by concentrated acid pre-treatment in both batch and continuous systems. Int J Hydrogen Energy. 2013;38(35):15823–15829.
  • Liu CM, Wu SY, Chu CY, et al. Biohydrogen production from rice straw hydrolyzate in a continuously external circulating bioreactor. Int J Hydrogen Energy. 2014;39(33):19317–19322.
  • Ramprakash B, Muthukumar K. Comparative study on the production of biohydrogen from rice mill wastewater. Int J Hydrogen Energy. 2014;39(27):14613–14621.
  • Tawfik A, Salem A, El-Qelish M, et al. Factors affecting hydrogen production from rice straw wastes in a mesophillic up-flow anaerobic staged reactor. Renewable Energy. 2013;50:402–407.
  • Yuan X, Shi X, Zhang P, et al. Anaerobic biohydrogen production from wheat stalk by mixed microflora: kinetic model and particle size influence. Bioresour Technol. 2011;102(19):9007–9012.
  • Tawfik A, Salem A. The effect of organic loading rate on bio-hydrogen production from pre-treated rice straw waste via mesophilic up-flow anaerobic reactor. Bioresour Technol. 2012;107:186–190.
  • Argun H, Kargi F, Kapdan IK. Microbial culture selection for bio-hydrogen production from waste ground wheat by dark fermentation. Int J Hydrogen Energy. 2009;34(5):2195–2200.
  • Argun H, Kargi F. Effects of sludge pre-treatment method on bio-hydrogen production by dark fermentation of waste ground wheat. Int J Hydrogen Energy. 2009;34(20):8543–8548.
  • Ozmihci S, Kargi F. Effects of starch loading rate on performance of combined fed-batch fermentation of ground wheat for bio-hydrogen production. Int J Hydrogen Energy. 2010;35(3):1106–1111.
  • Sagnak R, Kapdan IK, Kargi F. Dark fermentation of acid hydrolyzed ground wheat starch for bio-hydrogen production by periodic feeding and effluent removal. Int J Hydrogen Energy. 2010;35(18):9630–9636.
  • Ozmihci S, Kargi F. Dark fermentative bio-hydrogen production from waste wheat starch using co-culture with periodic feeding: effects of substrate loading rate. Int J Hydrogen Energy. 2011;36(12):7089–7093.
  • Yoder J, Galinato S, Granatstein D, et al. Economic tradeoff between biochar and bio-oil production via pyrolysis. Biomass Bioenergy. 2011;35(5):1851–1862.
  • Bridgwater AV, Grassi G. Biomass pyrolysis liquids upgrading and utilisation. Springer Science & Business Media.
  • Zhao X, Wang W, Liu H, et al. Microwave pyrolysis of wheat straw: product distribution and generation mechanism. Bioresour Technol. 2014;158:278–285.
  • Peterson SC, Jackson M a Simplifying pyrolysis: using gasification to produce corn stover and wheat straw biochar for sorptive and horticultural media. Ind Crops Prod. 2014;53:228–235.
  • Farooq MZ, Zeeshan M, Iqbal S, et al. Influence of waste tire addition on wheat straw pyrolysis yield and oil quality. Energy. 2018;144:200–206.
  • Lazdovica K, Liepina L, Kampars V. Comparative wheat straw catalytic pyrolysis in the presence of zeolites, Pt/C, and Pd/C by using TGA-FTIR method. Fuel Process Technol. 2015;138:645–653.
  • Mani T, Murugan P, Abedi J, et al. Pyrolysis of wheat straw in a thermogravimetric analyzer: effect of particle size and heating rate on devolatilization and estimation of global kinetics. Chem Eng Res Des. 2010;88(8):952–958.
  • Biswas B, Pandey N, Bisht Y, et al. Pyrolysis of agricultural biomass residues: comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour Technol. 2017;237:57–63.
  • Motte JC, Escudié R, Beaufils N, et al. Morphological structures of wheat straw strongly impacts its anaerobic digestion. Ind Crops Prod. 2014;52:695–701.
  • Cappelli A, Cini E. Challenges and opportunities in wheat flour, pasta, bread, and bakery product production chains: a systematic review of innovations and improvement strategies to increase sustainability, productivity, and product quality. Sustainability. 2021;13(5):2608.
  • Asadzadeh J, Teymori R, Ghazanfarirad N, et al. Fungal contamination of produced wheat flour in west Azerbaijan, northwest of Iran. Asian Pac J Trop Dis. 2014;4(Suppl 2):S836–S839.
  • Hamzeh Y, Ashori A, Mirzaei B, et al. Current and potential capabilities of biomass for green energy in Iran. Renewable Sustainable Energy Rev. 2011;15(9):4934–4938.
  • Patni N, Pillai SG, Dwivedi AH. Wheat as a promising substitute of corn for bioethanol production. Proc Eng. 2013;51:355–362.
  • Kim S, Dale BE. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy. 2004;26(4):361–375.
  • FAO. Food and agriculture organization of the United Nations, Food and agriculture data. Rome; 2020. Available from: http//faostat.fao.org
  • Maghanaki MM, Ghobadian B, Najafi G, et al. Janzadeh galogah R. Potential of biogas production in Iran‏. Renewable Sustainable Energy Rev. 2013;28:702–714.
  • Gholifar E, Asadi A, Akbari M, et al. Effective factors in agricultural apple waste in Islamic Republic Of Iran: a comparative study. J Hum Ecol. 2010;32(1):47–53.
  • Taherzadeh A, Hojjat SS. Study of post-harvest losses of wheat in North Eastern Iran. Int Res J Appl Basic Sci. 2013;4(6):1502–1505.
  • Asadi A, Akbari M, Mohammadi Y, et al. Agricultural wheat waste management in Iran. Aust J Basic Appl Sci. 2010;4(3):421–428.
  • Govumoni SP, Koti S, Kothagouni SY, et al. Evaluation of pretreatment methods for enzymatic saccharification of wheat straw for bioethanol production. Carbohydr Polym. 2013;91(2):646–650.
  • Wang M, Yan Z, Huang B, et al. Electricity generation by microbial fuel cells fuelled with enteromorpha prolifera hydrolysis. Int J Electrochem Sci. 2013;8(2):2104–2111.
  • Demirbas A. Competitive liquid biofuels from biomass. Appl Energy. 2011;88(1):17–28.
  • Ho DP, Ngo HH, Guo W. A mini review on renewable sources for biofuel. Bioresour Technol. 2014;169:742–749.
  • Tufail T, Saeed F, Afzaal M, et al. Wheat straw: a natural remedy against different maladies. Food Sci Nutr. 2021;9(4):2335–2344.
  • Guerra-Rodríguez E, Portilla-Rivera OM, Jarquín-Enríquez L, et al. Acid hydrolysis of wheat straw: a kinetic study. Biomass Bioenergy. 2012;36:346–355.
  • Bentsen NS, Felby C, Thorsen BJ. Agricultural residue production and potentials for energy and materials services. Prog Energy Combust Sci. 2014;40(1):59–73.
  • Iskalieva A, Yimmou BM, Gogate PR, et al. Cavitation assisted delignification of wheat straw: a review. Ultrason Sonochem. 2012;19(5):984–993.
  • Sun R, Tomkinson J. Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason Sonochem. 2002;9(2):85–93.
  • Panagiotopoulos IA, Bakker RR, de Vrije T, et al. Integration of first and second generation biofuels: fermentative hydrogen production from wheat grain and straw. Bioresour Technol. 2013;128:345–350.
  • Chandra R, Takeuchi H, Hasegawa T. Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renewable Sustainable Energy Rev. 2012;16(3):1462–1476.
  • Balat M, Balat H, Öz C. Progress in bioethanol processing. Prog Energy Combust Sci. 2008;34(5):551–573.
  • Palmarola-Adrados B, Chotěborská P, Galbe M, et al. Ethanol production from non-starch carbohydrates of wheat bran. Bioresour Technol. 2005;96(7):843–850.
  • Yue D, You F, Snyder SW. Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. Comput Chem Eng. 2014;66:36–56.
  • Demirbas A. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manage. 2008;49(8):2106–2116.
  • Martinez-Hernandez E, Ibrahim MH, Leach M, et al. Environmental sustainability analysis of UK whole-wheat bioethanol and CHP systems. Biomass Bioenergy. 2013;50:52–64.
  • Pecka-Kiełb E, Zachwieja A, Miśta D, et al. Use of corn dried distillers grains (DDGS) in feeding of ruminants. In: Jacob-Lopes E, Zepka LQ, editors. Frontiers in bioenergy and biofuels. IntechOpen; 2017.
  • Belboom S, Bodson B, Léonard A. Does the production of Belgian bioethanol fit with European requirements on GHG emissions? Case of wheat. Biomass Bioenergy. 2015;74:58–65.
  • Choi IS, Kim J-HH, Wi SG, et al. Bioethanol production from mandarin (citrus unshiu) peel waste using popping pretreatment. Appl Energy. 2013;102:204–210.
  • Najafi G, Ghobadian B, Tavakoli T, et al. Potential of bioethanol production from agricultural wastes in Iran. Renewable Sustainable Energy Rev. 2009;13(6–7):1418–1427.
  • Kerstetter JD, Lyons JK. Wheat straw for ethanol production in Washington: a resource, technical, and economic assessment. Washington State University, Cooperative Extension Energy Program; 2001.
  • Salvachúa D, Prieto A, López-Abelairas M, et al. Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol. 2011;102(16):7500–7506.
  • Janssen M, Tillman A-M, Cannella D, et al. Influence of high gravity process conditions on the environmental impact of ethanol production from wheat straw. Bioresour Technol. 2014;173:148–158.
  • Wu B, Zhang X, Xu Y, et al. Assessment of the energy consumption of the biogas upgrading process with pressure swing adsorption using novel adsorbents. J Clean Prod. 2015;101:251–261.
  • Nguyen H. Biogas production from solvent pretreated orange peel; 2012.
  • Ward AJ, Hobbs PJ, Holliman PJ, et al. Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol. 2008;99(17):7928–7940.
  • Li Y, Park SY, Zhu J. Solid-state anaerobic digestion for methane production from organic waste. Renewable Sustainable Energy Rev. 2011;15(1):821–826.
  • MarouĹĄek J, Kawamitsu Y, Ueno M, et al. Methods for improving methane yield from rye straw. Appl Eng Agric. 2012;28(5):747–755.
  • Maroušek J. Prospects in straw disintegration for biogas production. Environ Sci Pollut Res Int. 2013;20(10):7268–7274.
  • Krishania M, Vijay VK, Chandra R. Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay. Energy. 2013;57:359–367.
  • Chandra R, Takeuchi H, Hasegawa T, et al. Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy. 2012;43(1):273–282.
  • Yang D, Pang Y, Yuan H, et al. Enhancing biogas production from anaerobically digested wheat straw through ammonia pretreatment. Chin J Chem Eng. 2014;22(5):576–582.
  • Ferreira LC, Nilsen PJ, Fdz-Polanco F, et al. Biomethane potential of wheat straw: influence of particle size, water impregnation and thermal hydrolysis. Chem Eng J. 2014;242:254–259.
  • Xi Y, Chang Z, Ye X, et al. Methane production from wheat straw with anaerobic sludge by heme supplementation. Bioresour Technol. 2014;172:91–96.
  • Maroušek J. Finding the optimal parameters for the steam explosion process of hay. Rev Técnica la Fac Ing Univ del Zulia. 2012;35:170–178.
  • Maroušek J, Gavurová B. Recovering phosphorous from biogas fermentation residues indicates promising economic results. Chemosphere. 2022;291(Pt 1):133008.
  • Kim J-S. Production, separation and applications of phenolic-rich bio-oil – a review. Bioresour Technol. 2015;178:90–98.
  • Alvarez J, Lopez G, Amutio M, et al. Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor.pdf. Fuel. 2014;128:162–169.
  • Brammer JG, Lauer M, Bridgwater a V. Opportunities for biomass-derived “bio-oil” in European heat and power markets. Energy Policy. 2006;34(17):2871–2880.
  • Jahirul MI, Rasul MG, Chowdhury AA, et al. Biofuels production through biomass pyrolysis—a technological review. Energies. 2012;5(12):4952–5001.
  • Czernik S, Bridgwater AV. Overview of applications of biomass fast pyrolysis oil. Energy Fuels. 2004;18(2):590–598.
  • Piloni RV, Brunetti V, Urcelay RC, et al. Chemical properties of biosilica and bio-oil derived from fast pyrolysis of melosira varians. J Anal Appl Pyrolysis. 2017;127:402–410.
  • Guizani C, Valin S, Billaud J, et al. Biomass fast pyrolysis in a drop tube reactor for bio oil production: experiments and modeling. Fuel. 2017;207:71–84.
  • Ghorbannezhad P, Dehghani Firouzabadi M, Ghasemian A. Catalytic fast pyrolysis of sugarcane bagasse pith with HZSM-5 catalyst using tandem micro-reactor-GC-MS. Energy Sources Part A Recover Util Environ Eff. 2018;40(1):15–21.
  • Sharma A, Pareek V, Zhang D. Biomass pyrolysis—a review of modelling, process parameters and catalytic studies. Renewable Sustainable Energy Rev. 2015;50:1081–1096.
  • Bridgwater AV, Peacocke GVC. Fast pyrolysis processes for biomass. Renewable Sustainable energy Rev. 2000;4(1):1–73.
  • Yang Z, Zhang B, Chen X, et al. Studies on pyrolysis of wheat straw residues from ethanol production by solid-state fermentation. J Anal Appl Pyrolysis. 2008;81(2):243–246.
  • Zhao X, Wang M, Liu H, et al. Effect of temperature and additives on the yields of products and microwave pyrolysis behaviors of wheat straw. J Anal Appl Pyrolysis. 2013;100:49–55.
  • De Wild PJ, Huijgen WJJ, Heeres HJ. Pyrolysis of wheat straw-derived organosolv lignin. J Anal Appl Pyrolysis. 2012;93:95–103.
  • Meller Harel Y, Elad Y, Rav-David D, et al. Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant Soil. 2012;357(1–2):245–257.
  • Maroušek J, Trakal L. Techno-economic analysis reveals the untapped potential of wood biochar. Chemosphere. 2022;291(Pt 1):133000.
  • Elad Y, Cytryn E, Meller Harel Y, et al. The biochar effect: plant resistance to biotic stresses. Phytopathol Mediterr. 2011;50(3):335–349.
  • Han Y, Boateng AA, Qi PX, et al. Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. J Environ Manage. 2013;118:196–204.
  • Xu P, Sun CX, Ye XZ, et al. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a cd and Pb polluted soil. Ecotoxicol Environ Saf. 2016;132:94–100.
  • Cakır A, Ozmihci S, Kargi F. Comparison of bio-hydrogen production from hydrolyzed wheat starch by mesophilic and thermophilic dark fermentation. Int J Hydrogen Energy. 2010;35(24):13214–13218.
  • Arimi MM, Knodel J, Kiprop A, et al. Strategies for improvement of biohydrogen production from organic-rich wastewater: a review. Biomass Bioenergy. 2015;75(0):101–118.
  • Magnusson L, Islam R, Sparling R, et al. Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. Int J Hydrogen Energy. 2008;33(20):5398–5403.
  • Prakasham RS, Sathish T, Brahmaiah P, et al. Biohydrogen production from renewable agri-waste blend: optimization using mixer design. Int J Hydrogen Energy. 2009;34(15):6143–6148.
  • Bundhoo MaZ, Mohee R, Hassan MA. Effects of pre-treatment technologies on dark fermentative biohydrogen production: a review. J Environ Manage. 2015;157:20–48.
  • Ivanova G, Rákhely G, Kovács KL. Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int J Hydrogen Energy. 2009;34(9):3659–3670.
  • Argun H, Kargi F, Kapdan IK, et al. Biohydrogen production by dark fermentation of wheat powder solution: effects of C/N and C/P ratio on hydrogen yield and formation rate. Int J Hydrogen Energy. 2008;33(7):1813–1819.
  • Argun H, Kargi F, Kapdan IK, et al. Batch dark fermentation of powdered wheat starch to hydrogen gas: effects of the initial substrate and biomass concentrations. Int J Hydrogen Energy. 2008;33(21):6109–6115.
  • Linde M, Jakobsson E-L, Galbe M, et al. Steam pretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass Bioenergy. 2008;32(4):326–332.
  • Tutt M, Kikas T, Olt J. Influence of different pretreatment methods on bioethanol production from wheat straw. Agron Res. 2012;10(1):209–276.
  • Gogoi S, Bhuyan N, Sut D, et al. Agricultural wastes as feedstock for Thermo-Chemical conversion: products distribution and characterization. In: Ghosh SK, editor. Energy recovery processes from wastes. Springer; 2020, p. 115–128.
  • Varma AK, Mondal P. Pyrolysis of pine needles: effects of process parameters on products yield and analysis of products. J Therm Anal Calorim. 2018;131(3):2057–2072.
  • Varma AK, Mondal P. Pyrolysis of sugarcane bagasse in semi batch reactor: effects of process parameters on product yields and characterization of products. Ind Crops Prod. 2017;95:704–717.
  • Suriapparao DV, Vinu R. Effects of biomass particle size on slow pyrolysis kinetics and fast pyrolysis product distribution. Waste Biomass Valor. 2018;9(3):465–477.
  • Mao H, Genco JM, Yoon S-H, et al. Technical economic evaluation of a hardwood biorefinery using the “near-Neutral” hemicellulose Pre-Extraction process. J Biobased Mat Bioenergy. 2008;2(2):177–185.
  • Yazan DM, Mandras G, Garau G. Environmental and economic sustainability of integrated production in bio-refineries: the thistle case in Sardinia. Renewable energy. 2017;102:349–360.
  • Liu Y, Meenakshi V, Karthikeyan L, et al. Machine learning based predictive modelling of micro gas turbine engine fuelled with microalgae blends on using LSTM networks: an experimental approach. Fuel. 2022;322:124183.
  • Ghimire A, Kumar G, Sivagurunathan P, et al. Bio-hythane production from microalgae biomass: key challenges and potential opportunities for algal bio-refineries. Bioresour Technol. 2017;241:525–536.
  • Fahim MA, Al-Sahhaf TA, Elkilani A. Fundamentals of petroleum refining. Amsterdam, Netherlands: Elsevier; 2009.
  • Alves CM, Valk M, de Jong S, et al. Techno‐economic assessment of biorefinery technologies for aviation biofuels supply chains in Brazil. Biofuels, Bioprod Bioref. 2017;11(1):67–91.
  • Zetterholm J, Bryngemark E, Ahlström J, et al. Economic evaluation of large-scale biorefinery deployment: a framework integrating dynamic biomass market and techno-economic models. Sustainability. 2020;12(17):7126.
  • Cherubini F. The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manage. 2010;51(7):1412–1421.
  • Dyer JM, Mullen RT. Engineering plant oils as high‐value industrial feedstocks for biorefining: the need for underpinning cell biology research. Physiol Plant. 2008;132(1):11–22.
  • Cheng Y-S, Mutrakulcharoen P, Chuetor S, et al. Recent situation and progress in biorefining process of lignocellulosic biomass: toward green economy. Appl Sci Eng Prog. 2020;13(4):299–311.
  • Saini JK, Gupta R, Verma A, et al. Integrated lignocellulosic biorefinery for sustainable bio-based economy. In: Srivastava N, Srivastava M, Mishra PK, et al. editors. Sustainable approaches for biofuels production technologies. Springer; 2019, p. 25–46.
  • Babcock BA, Marette S, Tréguer D. Opportunity for profitable investments in cellulosic biofuels. Energy Policy. 2011;39(2):714–719.
  • Hill J, Nelson E, Tilman D, et al. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA. 2006;103(30):11206–11210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.