1,754
Views
1
CrossRef citations to date
0
Altmetric
Articles

Great expectations—future scenarios for production and use of biogas and digestate in Sweden

ORCID Icon &
Pages 93-107 | Received 29 Mar 2022, Accepted 29 Aug 2022, Published online: 09 Sep 2022

References

  • Hagman L, Blumenthal A, Eklund M, et al. The role of biogas solutions in sustainable biorefineries. J Clean Prod. 2018;172:3982–3989. https://doi.org/10.1016/j.jclepro.2017.03.180.
  • Kiselev A, Magaril E, Magaril R, et al. Towards circular economy: evaluation of sewage sludge biogas solutions. Resources. 2019;8(2):91. https://doi.org/10.3390/resources8020091.
  • Lindfors A, Feiz R, Eklund M, et al. Assessing the potential, performance and feasibility of urban solutions: methodological considerations and learnings from biogas solutions. Sustainability. 2019;11(14):3756. https://doi.org/10.3390/su11143756.
  • Richardson D. Farmers in rural Africa turn to biogas solutions to enable energy independence and cut deforestation rates. Gas Int. 2012;9:22–23.
  • Hagman L, Eklund M. The role of biogas solutions in the circular and bio-based economy. Linköping, Sweden: Swedish Biogas Research Center; 2016.
  • Scarlat N, Dallemand J-F, Fahl F. Biogas: Developments and perspectives in Europe. Renewable Energy. 2018;129:457–472. https://doi.org/10.1016/j.renene.2018.03.006.
  • Ahmadi Moghaddam E, Ahlgren S, Hulteberg C, et al. Energy balance and global warming potential of biogas-based fuels from a life cycle perspective. Fuel Process Technol. 2015;132:74–82. https://doi.org/10.1016/j.fuproc.2014.12.014.
  • Hosseini SE, Wahid MA. Development of biogas combustion in combined heat and power generation. Renewable Sustainable Energy Rev. 2014;40:868–875.
  • Lyng K-A, Brekke A. Environmental life cycle assessment of biogas as a fuel for transport compared with alternative fuels. Energies. 2019;12(3):532. https://doi.org/10.3390/en12030532.
  • Salvador R, Barros MV, Rosário J, et al. Life cycle assessment of electricity from biogas: a systematic literature review. Environ Prog Sustainable Energy. 2019;38(4):13133. https://doi.org/10.1002/ep.13133.
  • Chen S, Chen B, Song D. Life-cycle energy production and emissions mitigation by comprehensive biogas–digestate utilization. Bioresour Technol. 2012;114:357–364. https://doi.org/10.1016/j.biortech.2012.03.084.
  • Yasar A, Nazir S, Tabinda AB, et al. Socio-economic, health and agriculture benefits of rural household biogas plants in energy scarce developing countries: a case study from Pakistan. Renewable Energy. 2017;108:19–25. https://doi.org/10.1016/j.renene.2017.02.044.
  • Conti C, Mancusi ML, Sanna-Randaccio F, et al. Transition towards a green economy in Europe: innovation and knowledge integration in the renewable energy sector. Res Policy. 2018;47(10):1996–2009. https://doi.org/10.1016/j.respol.2018.07.007.
  • McCarty T, Sesmero J. Uncertainty, irreversibility, and investment in second-generation biofuels. Bioenerg Res. 2015;8(2):675–687. https://doi.org/10.1007/s12155-014-9549-y.
  • EurObserv’ER. Biogas barometer. 2017.
  • EurObserv'ER. Biogas barometer. 2010.
  • Kampman B, Leguijt C, Scholten T, et al. Optimal use of biogas from waste streams – an assessment of the potential of biogas from digestion in the EU beyond 2020. Brussels: European Commission; 2016.
  • Danish Energy Agency. Perspektiver for produktion og anvendelse af biogas i Danmark [Perspectives on production and use of biogas in Denmark]. Copenhagen, Denmark: Energistyrelsen; 2018.
  • French Ministry of Ecological and Solidarity Transition. Decree no. 2020-456 of April 21, 2020 relating to the multi-year energy programme (Décret no 2020-456 du 21 avril 2020 relatif à la programmation pluriannuelle de l’énergie) (no. TRER2006667D). J Officiel Répub Française. 2020:3.
  • Westlund Å, Berggren R, Jacobsson R, et al. More biogas! For a sustainable Sweden (Mer biogas! För ett hållbart sverige) (no. SOU 2019:63). tockholm, Sweden: Biogasmarknadsutredningen; 2019.
  • Huttunen S, Kivimaa P, Virkamäki V. The need for policy coherence to trigger a transition to biogas production. Environ Innovation Soc Transitions. 2014;12:14–30. https://doi.org/10.1016/j.eist.2014.04.002.
  • Nilsson M, Zamparutti T, Petersen JE, et al. Understanding policy coherence: analytical framework and examples of Sector-Environment policy interactions in the EU: understanding policy coherence. Env Pol Gov. 2012;22(6):395–423. https://doi.org/10.1002/eet.1589.
  • Hermann L, Hermann R. Report on regulations governing AD and NRR in EU member states SYSTEMIC, Grant Agreement no 730400; Wageningen, Netherlands: PROMAN Consulting; 2018.
  • van Grinsven A, Leguijt C, Tallat-Kelpsaite J. Supporting mechanisms for the development of biomethane in transport (no. 17.3K49.31). Delft, Netherlands: CE Delft; 2017.
  • Gustafsson M, Anderberg S. Dimensions and characteristics of biogas policies – modelling the European policy landscape. Renewable Sustainable Energy Rev. 2021;135:110200. https://doi.org/10.1016/j.rser.2020.110200.
  • Rogstrand G. Overview on administrative and legal conditions as well as on financial and other support programs, for small to medium scale biomethane production and supply. Record Biomap, Grant Agreement no. 691911; The Research Institute of Sweden (RISE); 2018.
  • European Commission. Commission proposes new EU framework to decarbonise gas markets, promote hydrogen and reduce methane emissions [WWW Document]. European Commission, Press corner; 2021a [cited 2021 Dec 20]. Available from https://ec.europa.eu/commission/presscorner/detail/en/IP_21_6682.
  • European Commission. Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee of the Regions on an EU strategy to reduce methane emissions (no. COM(2020) 663). Brussels, Belgium: European Commission; 2020a.
  • European Commission. Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee of the Regions – Powering a climate-neutral economy: an EU strategy for energy system integration (no. COM(2020) 299). Brussels, Belgium: European Commission; 2020b.
  • European Commission, Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee of the Regions – A farm to fork strategy for a fair, healthy and environmentally-friendly food system (no. COM(2020) 381). Brussels, Belgium: European Commission; 2020c.
  • European Commission. Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee of the Regions – REPowerEU: Joint European Action for more affordable, secure and sustainable energy (no. COM(2022) 108). Brussels, Belgium: European Commission; 2022a.
  • Swedish Environmental Protection Agency. Biogas from manure, waste and residual products – Good Swedish examples (Biogas ur gödsel, avfall och restprodukter – Goda svenska exempel) (no. 6518). Stockholm, Sweden: Naturvårdsverket; 2012.
  • Swedish Gas Association. Biogas in Sweden – English summary of the Swedish website Biogasportalen.se; 2011.
  • Olsson L, Fallde M. Waste(d) potential: a socio-technical analysis of biogas production and use in Sweden. J Clean Prod. 2015;98:107–115. https://doi.org/10.1016/j.jclepro.2014.02.015.
  • Ottosson M, Magnusson T, Andersson H. Shaping sustainable markets—a conceptual framework illustrated by the case of biogas in Sweden. Environ Innov Soc Transitions. 2020;36:303–320. https://doi.org/10.1016/j.eist.2019.10.008.
  • Dahlgren S, Liljeblad A, Cerruto J, et al. Realisable biogas potential in Sweden by 2030 through digestion and gasification (Realiserbar biogaspotential i Sverige år 2030 genom rötning och förgasning). Stockholm, Sweden: WSP; 2013.
  • Lönnqvist T. Biogas in Swedish transport – a policy-driven systemic transition. Stockholm: KTH Royal Institute of Technology; 2017.
  • Prade T, Björnsson L, Lantz M, et al. Can domestic production of iLUC-free feedstock from arable land supply Sweden’s future demand for biofuels? J Land Use Sci. 2017;12(6):407–441. https://doi.org/10.1080/1747423X.2017.1398280.
  • Gustafsson M, Anderberg S. Biogas policies and production development in Europe: a comparative analysis of eight countries. Biofuels. 2022;13(8):931–944.
  • Klackenberg L. Production of biogas and digestate and their use in 2020 (Produktion av biogas och rötrester och dess användning år 2020). Eskilstuna, Sweden: Swedish Energy Agency (Energimyndigheten); 2021b.
  • Klackenberg L. Biomethane in Sweden – market overview and policies. Stockholm, Sweden: Swedish Gas Association (Energigas Sverige); 2021a.
  • Lönnqvist T, Grönkvist S, Sandberg T. Forest-derived methane in the Swedish transport sector: a closing window? Energy Policy. 2017;105:440–450. https://doi.org/10.1016/j.enpol.2017.03.003.
  • Swedish Ministry of Infrastructure. Biogas production support (Stöd till produktion av biogas) [WWW Document]; 2022[cited 2022 Mar 28]. Available from: https://www.regeringen.se/pressmeddelanden/2022/03/stod-till-produktion-av-biogas/.
  • Varho V, Tapio P. Combining the qualitative and quantitative with the Q2 scenario technique—the case of transport and climate. Technol Forecast Soc Change. 2013;80(4):611–630. https://doi.org/10.1016/j.techfore.2012.09.004.
  • Wiek A, Binder C, Scholz RW. Functions of scenarios in transition processes. Futures. 2006;38(7):740–766. https://doi.org/10.1016/j.futures.2005.12.003.
  • Rotmans J, Kemp R, van Asselt M. More evolution than revolution: transition management in public policy. Foresight. 2001;3(1):15–31. https://doi.org/10.1108/14636680110803003.
  • Kahn H, Wiener AJ. The year 2000: a framework for speculation on the next thirty-three years. Polit Sci Quart. 1968;83(4):663. https://doi.org/10.2307/2146851.
  • Meadows DH, Meadows DL, Randers J, et al. The limits to growth: a report for the club of rome’s project on the predicament of mankind. New York: Universe Books; 1972.
  • Börjeson L, Höjer M, Dreborg K-H, et al. Scenario types and techniques: towards a user’s guide. Futures. 2006;38(7):723–739. https://doi.org/10.1016/j.futures.2005.12.002.
  • Mahmoud M, Liu Y, Hartmann H, et al. A formal framework for scenario development in support of environmental decision-making. Environ Modell Software. 2009;24(7):798–808. https://doi.org/10.1016/j.envsoft.2008.11.010.
  • Silva Oliveira A, Duarte de Barros M, de Carvalho Pereira F, et al. Prospective scenarios: a literature review on the Scopus database. Futures. 2018;100:20–33. https://doi.org/10.1016/j.futures.2018.03.005.
  • Robinson JB. Energy backcasting a proposed method of policy analysis. Energy Policy. 1982;10(4):337–344. https://doi.org/10.1016/0301-4215(82)90048-9.
  • Lyons G, Davidson C. Guidance for transport planning and policymaking in the face of an uncertain future. Transport Res Part A Policy Pract. 2016;88:104–116. https://doi.org/10.1016/j.tra.2016.03.012.
  • Anderberg, S., Prieler, S., Olendrzynski, K., de Bruyn, S., editors. Old sins: industrial metabolism, heavy metal pollution, and environmental transition in Central Europe. Tokyo: United Nations University Press; 2000.
  • Prieler S, Leskó AP, Anderberg S. Three scenarios for land-use change: a case study in Central Europe, research report/IIASA. Laxenburg: International Institute for Applied Systems Analysis; 1998.
  • Auvinen H, Ruutu S, Tuominen A, et al. Process supporting strategic decision-making in systemic transitions. Technol Forecast Soc Change. 2015;94:97–114. https://doi.org/10.1016/j.techfore.2014.07.011.
  • Geels FW, McMeekin A, Pfluger B. Socio-technical scenarios as a methodological tool to explore social and political feasibility in low-carbon transitions: bridging computer models and the multi-level perspective in UK electricity generation (2010–2050). Technol Forecast Soc Change. 2020;151:119258. https://doi.org/10.1016/j.techfore.2018.04.001.
  • Söderholm P, Hildingsson R, Johansson B, et al. Governing the transition to low-carbon futures: a critical survey of energy scenarios for 2050. Futures. 2011;43(10):1105–1116. https://doi.org/10.1016/j.futures.2011.07.009.
  • van Sluisveld MAE, Hof AF, Carrara S, et al. Aligning integrated assessment modelling with socio-technical transition insights: an application to low-carbon energy scenario analysis in Europe. Technol Forecast Soc Change. 2020;151:119177. https://doi.org/10.1016/j.techfore.2017.10.024.
  • Hillman KM, Sandén BA. Exploring technology paths: the development of alternative transport fuels in Sweden 2007–2020. Technol Forecast Soc Change. 2008;75(8):1279–1302.
  • Hofman PS, Elzen BE, Geels FW. Sociotechnical scenarios as a new policy tool to explore system innovations: co-evolution of technology and society in the Netherland’s electricity domain. Innovation. 2004;6(2):344–360. https://doi.org/10.5172/impp.2004.6.2.344.
  • Turnheim B, Berkhout F, Geels F, et al. Evaluating sustainability transitions pathways: bridging analytical approaches to address governance challenges. Global Environ Change. 2015;35:239–253. https://doi.org/10.1016/j.gloenvcha.2015.08.010.
  • Eden A. Bio-Methane support policy in France. Federal Ministry for the Environment. Berlin, Germany: Adelphi, Nature Conservation and Nuclear Safety (BMU); 2018.
  • Metson GS, Feiz R, Quttineh N-H, et al. Optimizing transport to maximize nutrient recycling and green energy recovery. Resour Conserv Recycling X. 2020; 9–10:100049. https://doi.org/10.1016/j.rcrx.2021.100049.
  • Lindfors A, Eklund M, Brunzell A, et al. Världens bästa biogassystem – Ett BRC innovationsprojekt. Linköping, Sweden: Swedish Biogas Research Center; 2022.
  • European Commission. Communication from the Commission – Guidelines on state aid for climate, environmental protection and energy 2022 (no. C(2022) 481). Brussels, Belgium: European Commission; 2022b.
  • Gustafsson M, Anderberg S, Fredriksson Möller B, et al. The institutional conditions of biogas (Biogasens institutionella villkor) (no. 2021:4). Linköping, Sweden: Swedish Biogas Research Center; 2021a.
  • Gustafsson M, Svensson N, Eklund M, et al. Well-to-wheel climate performance of gas and electric vehicles in Europe. Transport Res Part D Transport Environ. 2021c;97:102911. https://doi.org/10.1016/j.trd.2021.102911.
  • Gustafsson M, Svensson N, Eklund M, et al. Well-to-wheel greenhouse gas emissions of heavy-duty transports – influence of electricity carbon intensity. Transport Res Part D Transport Environ. 2021b;93:102757. https://doi.org/10.1016/j.trd.2021.102757.
  • Prussi M, Yugo M, De Prada L, et al. JEC well-to-wheels report v5: Well-to-Wheels analysis of future automotive fuels and powertrains in the European context (no. EUR 30284 EN), JRC Technical reports. Luxembourg: JRC; 2020.
  • Ahlgren S, Björnsson L, Prade T, et al. Biodrivmedel och markanvändning i Sverige. Miljö-och energisystem, LTH, Lunds universitet. Lund, Sweden; 2017.
  • Björn A, Borgström Y, Ejlertsson J, et al. Biogas production in Swedish pulp and paper production – synthesis of opportunities and limitations and technical evaluation (Biogasproduktion inom svensk pappers- och massaproduktion – Syntes av möjligheter och begränsningar samt teknisk utvärdering). Linköping, Sweden: Linköping University, Scandinavian Biogas Fuels and Pöyry; 2016.
  • Carlsson M, Uldal M. Substrathandbok för biogasproduktion (no. SGC 200). Malmö, Sweden: Svenskt Gastekniskt Center; 2009.
  • Ekstrand E-M, Larsson M, Truong X-B, et al. Methane potentials of the Swedish pulp and paper industry – a screening of wastewater effluents. Appl Energy. 2013;112:507–517.
  • Lindfors A, Gustafsson M, Anderberg S, et al. Developing biogas systems in Norrköping, Sweden: An industrial symbiosis intervention. J Clean Prod. 2020;277. https://doi.org/10.1016/j.jclepro.2020.122822
  • Tufvesson LM, Lantz M, Börjesson P. Environmental performance of biogas produced from industrial residues including competition with animal feed – life-cycle calculations according to different methodologies and standards. J Clean Prod. 2013;53:214–223. https://doi.org/10.1016/j.jclepro.2013.04.005.
  • Entesari N, Divsalar A, Tsotsis TT. Modeling and simulation of a reactive separation system for carbon capture and utilization in biogas streams. Chem Eng Process – Process Intensification. 2020;156:108093. https://doi.org/10.1016/j.cep.2020.108093.
  • Voelklein MA, Rusmanis D, Murphy JD. Biological methanation: strategies for in-situ and ex-situ upgrading in anaerobic digestion. Appl Energy. 2019;235:1061–1071. https://doi.org/10.1016/j.apenergy.2018.11.006.
  • EBA. European Biogas Association Statistical Report: 2019 European Overivew. Brussels, Belgium: EBA; 2020.
  • Raven R, Gregersen KH. Biogas plants in Denmark: successes and setbacks. Renewable Sustainable Energy Rev. 2007;11(1):116–132. https://doi.org/10.1016/j.rser.2004.12.002.
  • Dahlgren S, Kanda W, Anderberg S. Drivers for and barriers to biogas use in manufacturing, road transport and shipping: a demand-side perspective. Biofuels. 2022;13(2):1–12. https://doi.org/10.1080/17597269.2019.1657661.
  • Lönnqvist T, Anderberg S, Ammenberg J, et al. Stimulating biogas in the transport sector in a Swedish region – an actor and policy analysis with supply side focus. Renewable Sustainable Energy Rev. 2019;113:109269. https://doi.org/10.1016/j.rser.2019.109269.
  • Ammenberg J, Anderberg S, Lönnqvist T, et al. Biogas in the transport sector—actor and policy analysis focusing on the demand side in the Stockholm region. Resour Conserv Recycling. 2018;129:70–80. https://doi.org/10.1016/j.resconrec.2017.10.010.
  • Xylia M, Silveira S. On the road to fossil-free public transport: the case of Swedish bus fleets. Energy Policy. 2017;100:397–412. https://doi.org/10.1016/j.enpol.2016.02.024.
  • European Commission. European Green Deal: Commission proposes transformation of EU economy and society to meet climate ambitions [WWW Document]; 2021b [cited 2022 Jan 28]. Available from: https://ec.europa.eu/commission/presscorner/detail/en/ip_21_3541.
  • Hunhammar S, Pucher M, Jernbäcker E, et al. In a world in transition – Sweden without fossil fuels 2040 (I en värld som ställer om – Sverige utan fossila drivmedel 2040) (no. SOU 2021:48). Stockholm, Sweden: Utfasningsutredningen; 2021.
  • Wiborg E, Dyveke Søttar H, Johnsen TA, et al. Proposal to remove the governmental barriers for increased production and use of biogas (Innstilling om å fjerne de statlige barrierene for økt produksjon og bruk av biogass) (no. 8:231 S). Norway: Government of Norway (Stortinget); 2021.
  • European Commission. Proposal for a regulation of the European Parliament and of the Council on the use of renewable and low-carbon fuels in Maritime transport and amending directive 2009/16/EC (no. COM(2021) 562). Brussels, Belgium: European Commission; 2021c.
  • Ammenberg J, Gustafsson M, O’Shea R, et al. Perspectives on biomethane as a transport fuel within a circular economy, energy, and environmental system (no. 2021:12). Linköping, Sweden: (IEA Bioenergy Task 37); 2021.
  • Lönnqvist T, Fagerström A, Feiz R, et al. Security of supply and circularity of transport biofuels – method development (no. FDOS 24:2022). Stockholm, Sweden: f3 The Swedish Knowledge Centre for Renewable Transportation Fuels & Swedish Energy Agency; 2022.
  • Trading Economics. EU Natural Gas [WWW Document]; 2022 [cited 2022 Mar 3]. Available from: https://tradingeconomics.com/commodity/eu-natural-gas.
  • Council of the EUE:\Praveen\TF-TBFU220054\12. Russia’s military aggression against Ukraine: EU imposes sanctions against President Putin and Foreign Minister Lavrov and adopts wide ranging individual and economic sanctions [WWW Document]; 2022 [cited 2022 Mar 3]. Available from: https://www.consilium.europa.eu/en/press/press-releases/2022/02/25/russia-s-military-aggression-against-ukraine-eu-imposes-sanctions-against-president-putin-and-foreign-minister-lavrov-and-adopts-wide-ranging-individual-and-economic-sanctions/?utm_source=dsms-auto&utm_medium=email&utm_campaign=Russia%u2019s+military+aggression+against+Ukraine%3a+EU+imposes+sanctions+against+President+Putin+and+Foreign+Minister+Lavrov+and+adopts+wide+ranging+individual+and+economic+sanctions.
  • Van Driel H, Schot J. Radical innovation as a multilevel process: Introducing floating grain elevators in the port of Rotterdam. Technol Culture. 2005;46(1):51–76.
  • Lindquist H. The journey of reinventing the European Electricity Landscape—challenges and pioneers. In: Lawrence EJ, editors. Renewable energy integration. Amsterdam: Elsevier; 2014. p. 3–12. https://doi.org/10.1016/B978-0-12-407910-6.00001-6
  • Soeder DJ, Borglum SJ. Energy security, in: the fossil fuel revolution: shale gas and tight oil. Amsterdam: Elsevier; 2019. p. 251–277. https://doi.org/10.1016/B978-0-12-815397-0.00009-4
  • Upham P, Eberhardt L, Klapper RG. Rethinking the meaning of “landscape shocks” in energy transitions: German social representations of the Fukushima nuclear accident. Energy Res Soc Sci. 2020;69:101710. https://doi.org/10.1016/j.erss.2020.101710.
  • Kanda W, Kivimaa P. What opportunities could the COVID-19 outbreak offer for sustainability transitions research on electricity and mobility? Energy Res Soc Sci. 2020;68:101666. https://doi.org/10.1016/j.erss.2020.101666.
  • Edwards J, Othman M, Burn S. A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia. Renewable Sustainable Energy Rev. 2015;52:815–828. https://doi.org/10.1016/j.rser.2015.07.112.
  • Lantz M, Svensson M, Björnsson L, et al. The prospects for an expansion of biogas systems in Sweden—incentives, barriers and potentials. Energy Policy. 2007;35(3):1830–1843. https://doi.org/10.1016/j.enpol.2006.05.017.
  • Nevzorova T, Kutcherov V. Barriers to the wider implementation of biogas as a source of energy: a state-of-the-art review. Energy Strategy Rev. 2019;26:100414. https://doi.org/10.1016/j.esr.2019.100414.