224
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effect of single and combined pretreatment strategies applied to Chlorella vulgaris biomass on bioethanol production

, , &
Pages 165-172 | Received 19 Feb 2022, Accepted 08 Sep 2022, Published online: 20 Sep 2022

References

  • Constantino A, Rodrigues B, Leon R, et al. Alternative chemo-enzymatic hydrolysis strategy applied to different microalgae species for bioethanol production. Algal Res. 2021;56:102329.
  • Kim HM, Oh CH, Bae HJ. Comparison of red microalgae (porphyridium cruentum) culture conditions for bioethanol production. Bioresour Technol. 2017;233:44–50.
  • Magpusao J, Oey I, Kebede B. 2021. Opportunities and challenges of algal protein extraction and production. In Innovative food processing technologies: a comprehensive review, pp. 216–233. Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.23026-6.
  • Al Abdallah Q, Nixon BT, Fortwendel JR. The enzymatic conversion of major algal and cyanobacterial carbohydrates to bioethanol. Front Energy Res. 2016;4(NOV):1–15.
  • Shokrkar H, Ebrahimi S, Zamani M. Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture. Fuel. 2017;200:380–386.
  • Khan MI, Lee MG, Shin JH, et al. Pretreatment optimization of the biomass of Microcystis aeruginosa for efficient bioethanol production. AMB Expr. 2017;7(1):7–19.
  • Johnson EA, Echavarri-Erasun C. 2011. Yeast biotechnology. In The yeasts.(Vol. 1, pp. 2144.). Amsterdam: Elsevier B.V. https://doi.org/10.1016/B978-0-444-52149-1.00003-3.
  • Ajiboye TO, Iliasu GA, Ojewuyi OB, et al. Sorghum-based alcoholic beverage, burukutu, perturbs the redox status of the liver of male rats. Food Sci Nutr. 2014;2(5):591–596.
  • Srivastava N, Srivastava M, Mishra PK, et al. 2020. Substrate analysis for effective biofuels production. Springer Nature, Singapore, pp. 1–32. https://doi.org/10.1007/978-981-32-9607-7.
  • De Farias Silva CE, Meneghello D, de Souza Abud AK, et al. Pretreatment of microalgal biomass to improve the enzymatic hydrolysis of carbohydrates by ultrasonication: yield vs energy consumption. J. King Saud Univ. Sci. 2020;32(1):606–613.
  • Phwan CK, Chew KW, Sebayang AH, et al. Effects of acids pre-treatment on the microbial fermentation process for bioethanol production from microalgae. Biotechnol. Biofuels. 2019;12(1):1–8.
  • Sulfahri M, Mushlihah S, Husain DR, et al. Fungal pretreatment as a sustainable and low cost option for bioethanol production from marine algae. J. Clean. Prod. 2020;265:121763.
  • Agwa OK, Nwosu IG, Abu GO. Bioethanol production from Chlorella vulgaris biomass cultivated with plantain (Musa paradisiaca) peels extract. ABB. 2017;8(12):478–490.
  • Nwachukwu IN, Ibekwe VI, Nwabueze RN, et al. Characterisation of palm wine yeast isolates for industrial utilisation. Afr J. Biotechnol. 2006;5(19):1725–1728.
  • Daniel IU, Chukwunonso AN, Arinze LE, et al. Extraction, partial purification and characterization of pectinases isolated from Aspergillus species cultured on mango (Mangifera indica) peels. Afr J Biotechnol. 2014;13(24):2445–2454.
  • Pointing SB. Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers. 1999;2(March):17–33.
  • Kale RA, Zanwar PH. Isolation and screening of cellulolytic fungi. IOSR J. Biotechnol. Biochem. Part: II. 2016;2(6):2264–2455.
  • Wang S, Lin C, Liu Y, et al. Characterization of a starch-hydrolyzing α-amylase produced by Aspergillus niger WLB42 mutated by ethyl methanesulfonate treatment. Int J Biochem Mol Biol. 2016;7(1):1–10.
  • Yassin SN, Jiru TM, Indracanti M. Screening and characterization of thermostable amylase-producing bacteria isolated from soil samples of afdera, Afar region, and molecular detection of amylase-coding gene. Int J Microbiol. 2021;2021:5592814–5592885.
  • Ho SH, Huang SW, Chen CY, et al. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol. 2013;135:191–198.
  • Kassim MA, Bhattacharya S. Dilute alkaline pretreatment for reducing sugar production from Tetraselmis suecica and chlorella sp. biomass. Process Biochem. 2016;51(11):1757–1766.
  • El-Hadi AA, El-Nour S, Hammad A, et al. Optimization of cultural and nutritional conditionsfor carboxymethylcellulase productionby Aspergillus hortai. J. Radiat. Res. Appl. 2014;7(1):23–28.
  • Tobechukwu CE, Sabinus OO, Chukwunonso N, et al. Production of pectinases from Aspergillus niger using submerged fermentation with orange peels as carbon source. Sylwan. 2014;158(8):434–440.
  • Syawala D. Production of bioethanol from corncob and sugarcane bagasse with hydrolysis process using Aspergillus niger and trichoderma viride. IOSR-JESTFT. 2013;5(4):49–56.
  • Adiotomre KO. Production of bioethanol as an alternative source of fuel using cassava and yam peels as raw materials. Int. J. Innov. Res. Sci. Eng. Technol. 2015;3(2):28–44.
  • Oyeleke SB, Dauda BEN, Oyewole OA, et al. Corresponding author production of bioethanol from cassava and sweet potato peels 1 production of bioethanol from cassava and sweet potato peels. Adv. Environ. Biol. 2012;6(1):241–245.
  • DuBois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350–356.
  • Pongcharoen P, Chawneua J, Tawong W. High temperature alcoholic fermentation by new thermotolerant yeast strains pichia kudriavzevii isolated from sugarcane field soil. Agric. Nat. Resour. 2018;52(6):511–518.
  • Techaparin A, Thanonkeo P, Klanrit P. High-temperature ethanol production using thermotolerant yeast newly isolated from greater mekong subregion. Braz J Microbiol. 2017;48(3):461–475.
  • Dalawai N. Screening of efficient ethanol tolerant yeast strain for production of ethanol. Int J Pure App Biosci. 2017;5(1):744–752.
  • Chechet JN. 2016. Bioethanol production from banana (Musa sapeintum) peels waste using co-cultures of Aspergillus niger and Saccharomyces cerevisiae [thesis]. Ahmadu Bello University. http://kubanni.abu.edu.ng/jspui/bitstream/123456789/9651/1/bioethanolproductionfrombanana%28musasapeintum%29peelswasteusingcoculturesofaspergillusnigerandsaccharomycescerevisiae.pdf
  • Abubakar SC. 2017. Bioethanol production from sugarcane bagasse and rice stalk using local strains of Aspergillus niger and Saccharomyces cerevisiae as co-cultures [thesis]. Ahmadu Bello University. https://www.researchgate.net/publication/334697903_Studies_on_Bioethanol_Production_from_Rice_Stalk_using_Co_cultures_of_Aspergillus_niger_and_Saccharomyces_cerevisiae.
  • Carrasco M, Villarreal P, Barahona S, et al. Screening and characterization of amylase and cellulase activities in psychrotolerant yeasts. BMC Microbiol. 2016;16(1):1–9.
  • Lakatos GE, Ranglová K, Manoel JC, et al. Bioethanol production from microalgae polysaccharides. Folia Microbiol (Praha). 2019;64(5):627–644.
  • Harun R, Jason WSY, Cherrington T, et al. Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl. Energy. 2011;88(10):3464–3467.
  • Lu-Chau TA, García-Torreiro M, López-Abelairas M, et al. 2019. Application of fungal pretreatment in the production of ethanol from crop residues. In Bioethanol production from food crops: sustainable sources, interventions, and challenges, pp. 267–292. Amsterdam: Elsevier Inc. https://doi.org/10.1016/b978-0-12-813766-6.00014-x.
  • Bellaouchi R, Abouloifa H, Rokni Y, et al. Characterization and optimization of extracellular enzymes production by Aspergillus niger strains isolated from date by-products. J. Genet. Eng. Biotechnol. 2021;19(1):19–50.
  • Timung R, Naik DN, Goud VV, et al. Effect of subsequent dilute acid and enzymatic hydrolysis on reducing sugar production from sugarcane bagasse and spent citronella biomass. J. Energy. 2016;2016:1–12.
  • Velazquez-Lucio J, Rodríguez-Jasso RM, Colla LM, et al. Microalgal biomass pretreatment for bioethanol production: a review. Biofuel Res J. 2018;5(1):780–791.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.