154
Views
0
CrossRef citations to date
0
Altmetric
Articles

Mixotrophic cultivation enhances lipid productivity and fatty acid profile towards efficient production of microalgae-based biofuel from Desmodesmus sp. DLK

, &
Pages 211-222 | Received 30 May 2022, Accepted 18 Sep 2022, Published online: 13 Oct 2022

References

  • Lang X, Dalai AK, Bakhshi NN, et al. Preparation and characterization of bio-diesels from various bio-oils. Bioresour Technol. 2001;80(1):53–62.
  • Mahapatra DM, Chanakya HN, Ramachandra TV. Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment. J Appl Phycol. 2013;25(3):855–865.
  • Esen M, Yuksel T. Experimental evaluation of using various renewable energy sources for heating a greenhouse. Energy Build. 2013;65:340–351.
  • Saravanan AP, Mathimani T, Deviram G, et al. Biofuel policy in India: a review of policy barriers in sustainable marketing of biofuel. J Clean Prod. 2018;193:734–747.
  • Anto S, Mukherjee SS, Muthappa R, et al. Algae as green energy reserve: technological outlook on biofuel production. Chemosphere. 2020;242:125079.
  • Barnwal BK, Sharma MP. Prospects of biodiesel production from vegetable oils in India. Renew Sustain Energy Rev. 2005;9(4):363–378.
  • Deviram G, Mathimani T, Anto S, et al. Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. J Clean Prod. 2020;253:119770.
  • Saranya G, Ramachandra TV. Scope for biodiesel and bioactive compounds production in the diatom Nitzschia punctata. Fuel. 2021;300:120985.
  • Goh BHH, Ong HC, Cheah MY, et al. Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renew Sustain Energy Rev. 2019;107:59–74.
  • Pal P, Chew KW, Yen HW, et al. Cultivation of oily microalgae for the production of third-generation biofuels. Sustainability. 2019;11(19):5424.
  • Enamala MK, Enamala S, Chavali M, et al. Production of biofuels from microalgae – a review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renew Sustain Energy Rev. 2018;94:49–68.
  • Whangchai K, Mathimani T, Sekar M, et al. Synergistic supplementation of organic carbon substrates for upgrading neutral lipids and fatty acids contents in microalga. J Environ Chem Eng. 2021;9(4):105482.
  • Chojnacka KW, Joaquin Marquez-Rocha F, Marquez-Rocha F-J, et al. Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology. 2004;3(1):21–34.
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.
  • Deng XY, Xue CY, Chen B, et al. Glucose addition-induced changes in the growth and chemical compositions of a freshwater microalga Chlorella kessleri. J Chem Technol Biotechnol. 2019;94(4):1202–1209.
  • Cerón Garcí MC, Fernández Sevilla JM, Acien Fernandez FG, et al. Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. J Appl Phycol. 2000;12(3/5):239–248.
  • Cheirsilp B, Torpee S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol. 2012;110:510–516.
  • Baldisserotto C, Sabia A, Guerrini A, et al. Mixotrophic cultivation of Thalassiosira pseudonana with pure and crude glycerol: impact on lipid profile. Algal Res. 2021;54:102194.
  • Cid A, Abalde J, Herrero C. High yield mixotrophic cultures of the marine microalga Tetraselmis suecica (Kylin) Butcher (Prasinophyceae). J Appl Phycol. 1992;4(1):31–37.
  • Zhan J, Rong J, Wang Q. Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. Int J Hydrogen Energy. 2017;42(12):8505–8517.
  • Praveenkumar R, Kim B, Choi E, et al. Mixotrophic cultivation of oleaginous Chlorella sp. KR-1 mediated by actual coal-fired flue gas for biodiesel production. Bioprocess Biosyst Eng. 2014;37(10):2083–2094.
  • Ogbonna IO, Okpozu OO, Ikwebe J, et al. Utilisation of Desmodesmus subspicatus LC172266 for simultaneous remediation of cassava wastewater and accumulation of lipids for biodiesel production. Biofuels. 2019;10(5):657–664.
  • Lin TS, Wu JY. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Bioresour Technol. 2015;184:100–107.
  • Jeon YC, Cho CW, Yun YS. Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzyme Microb Technol. 2006;39(3):490–495.
  • Wang H, Fu R, Pei G. A study on lipid production of the mixotrophic microalgae Phaeodactylum tricornutum on various carbon sources. African J Microbiol Res. 2012;6:1041–1047.
  • Kong WB, Hua SF, Cao H, et al. Optimization of mixotrophic medium components for biomass production and biochemical composition biosynthesis by chlorella vulgaris using response surface methodology. J Taiwan Inst Chem Eng. 2012;43(3):360–367.
  • Liu N, Guo B, Cao Y, et al. Effects of organic carbon sources on the biomass and lipid production by the novel microalga Micractinium reisseri FM1 under batch and fed-batch cultivation. South African J Bot. 2021;139:329–337.
  • Kong WB, Yang H, Cao YT, et al. Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture. Food Technol Biotechnol. 2013;51:62–69.
  • Liang Y, Sarkany N, Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett. 2009;31(7):1043–1049.
  • Paranjape K, Leite GB, Hallenbeck PC. Strain variation in microalgal lipid production during mixotrophic growth with glycerol. Bioresour Technol. 2016;204:80–88.
  • El-Sheekh M, Abomohra AEF, Hanelt D. Optimization of biomass and fatty acid productivity of Scenedesmus obliquus as a promising microalga for biodiesel production. World J Microbiol Biotechnol. 2013;29(5):915–922.
  • Andruleviciute V, Makareviciene V, Skorupskaite V, et al. Biomass and oil content of Chlorella sp., Haematococcus sp., Nannochloris sp. and Scenedesmus sp. under mixotrophic growth conditions in the presence of technical glycerol. J Appl Phycol. 2014;26(1):83–90.
  • Bashir KMI, Mansoor S, Kim NR, et al. Effect of organic carbon sources and environmental factors on cell growth and lipid content of Pavlova lutheri. Ann Microbiol. 2019;69(4):353–368.
  • Rai MP, Gupta S. Effect of media composition and light supply on biomass, lipid content and FAME profile for quality biofuel production from Scenedesmus abundans. Energy Convers Manag. 2017;141:85–92.
  • Francisco EC, Neves DB, Jacob Lopes E, et al. Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol. 2010;85(3):395–403.
  • Jena J, Nayak M, Sekhar Panda H, et al. Microalgae of Odisha coast as a potential source for biodiesel production. ENV. 2012;2(1):12–17.
  • Sharma AK, Sahoo PK, Singhal S, et al. Impact of various media and organic carbon sources on biofuel production potential from Chlorella spp. 3 Biotech. 2016;6(2):116.
  • Gupta S, Pawar SB. Mixotrophic cultivation of microalgae to enhance the quality of lipid for biodiesel application: effects of scale of cultivation and light spectrum on reduction of α-linolenic acid. Bioprocess Biosyst Eng. 2018;41(4):531–542.
  • Menegol T, Romero-Villegas GI, López-Rodríguez M, et al. Mixotrophic production of polyunsaturated fatty acids and carotenoids by the microalga Nannochloropsis gaditana. J Appl Phycol. 2019;31(5):2823–2832.
  • Mitra M, Mishra S. Effect of glucose on growth and fatty acid composition of an euryhaline eustigmatophyte Nannochloropsis oceanica under mixotrophic culture condition. Bioresour Technol Rep. 2018;3:147–153.
  • Grierson S, Strezov V, Ellem G, et al. Thermal characterisation of microalgae under slow pyrolysis conditions. J Anal Appl Pyrolysis. 2009;85(1-2):118–123.
  • Cui Z, Cheng F, Jarvis JM, et al. Integrated extraction and catalytic upgrading of biocrude oil from co-hydrothermal liquefaction of crude glycerol and algae. Energy Fuels. 2021;35(15):12165–12174.
  • Lu J, Li H, Zhang Y, et al. Nitrogen migration and transformation during hydrothermal liquefaction of livestock manures. ACS Sustain Chem Eng. 2018;6(10):13570–13578.
  • Saber M, Nakhshiniev B, Yoshikawa K. A review of production and upgrading of algal bio-oil. Renew Sustain Energy Rev. 2016;58:918–930.
  • Xiu S, Shahbazi A. Bio-oil production and upgrading research: a review. Renew Sustain Energy Rev. 2012;16(7):4406–4414.
  • Sehgal A, Goswami K, Pal M, et al. Morpho-taxonomic, genetic, and biochemical characterization of freshwater microalgae as potential biodiesel feedstock. 3 Biotech. 2019;9(4):137.
  • Doyle JJ, Doyle J. Isolation of plant DNA from fresh tissue. Focus (Madison). 1990;12:13–15.
  • Wang Y, Tian RM, Gao ZM, et al. Optimal eukaryotic 18S and universal 16S/18S ribosomal RNA primers and their application in a study of symbiosis. PLoS One. 2014;9(3):e90053.
  • Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–2729.
  • Andersen RA. Algal culturing techniques. Vol. 91. Phycological Society of America; Elsevier Academic press. 2005.
  • Dubois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350–356.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.
  • Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24(1):1–15.
  • Kirk JTO, Allen RL. Dependence of chloroplast pigment synthesis on protein synthesis: effect of actidione. Biochem Biophys Res Commun. 1965;21(6):523–530.
  • Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999;299:152–178.
  • Choochote W, Suklampoo L, Ochaikul D. Evaluation of antioxidant capacities of green microalgae. J Appl Phycol. 2014;26(1):43–48.
  • ASTM International. ASTM D2974-14: standard test methods for moisture, ash, and organic matter of peat and other organic soils. 4, 2014.
  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–917.
  • Arora S, Mishra G. Biochemical modulation of Monodopsis subterranea (Eustigmatophyceae) by auxin and cytokinin enhances eicosapentaenoic acid productivity. J Appl Phycol. 2019;31(6):3441–3452.
  • Hegewald E, Wolf M. Phylogenetic relationships of Scenedesmus and Acutodesmus (Chlorophyta, Chlorophyceae) as inferred from 18S rDNA and ITS-2 sequence comparisons. Plant Syst Evol. 2003;241(3-4):185–191.
  • Kunrunmi O, Adesalu T, Kumar S. Genetic identification of new microalgal species from Epe Lagoon of West Africa accumulating high lipids. Algal Res. 2017;22:68–78.
  • An SS, Friedl T, Hegewald E. Phylogenetic relationships of Scenedesmus and Scenedesmus-like coccoid green algae as inferred from ITS-2 rDNA sequence comparisons. Plant Biol. 1999;1(4):418–428.
  • Akgül F. Effects of nitrogen concentration on growth, biomass, and biochemical composition of Desmodesmus communis (E. Hegewald) E. Hegewald. Prep Biochem Biotechnol. 2020;50(1):98–105.
  • Markovits A, Gianelli MP, Conejeros R, et al. Strain selection for β-carotene production by Dunaliella. World J Microbiol Biotechnol. 1993;9(5):534–537.
  • Song M, Pei H, Hu W, et al. Identification and characterization of a freshwater microalga Scenedesmus SDEC-8 for nutrient removal and biodiesel production. Bioresour Technol. 2014;162:129–135.
  • Gour RS, Chawla A, Singh H, et al. Characterization and screening of native Scenedesmus sp. isolates suitable for biofuel feedstock. PLoS One. 2016;11(5):e0155321.
  • Ahiahonu EK, Anku WW, Roopnarain A, et al. Bioprospecting wild South African microalgae as a potential third-generation biofuel feedstock, biological carbon-capture agent and for nutraceutical applications. Biomass Convers Biorefinery. 2021; https://doi.org/10.1007/s13399-021-01675-8
  • Ferreira GF, Ríos Pinto LF, Carvalho PO, et al. Biomass and lipid characterization of microalgae genera Botryococcus, Chlorella, and Desmodesmus aiming high-value fatty acid production. Biomass Conv Bioref. 2021;11(5):1675–1689.
  • Karkala S, D’Souza L, Nivas S, et al. Bioprospecting microalgae harnessed from the coastal belt of Mangalore, India as prospective nutraceutical and biofuel candidates. Appl Phycol. 2021;2(1):60–73.
  • Siddiki SYA, Mofijur M, Kumar PS, et al. Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: an integrated biorefinery concept. Fuel. 2022;307:121782.
  • Idrissi Abdelkhalek EA, Mohamed B, Mohammed AM, et al. Growth performance and biochemical composition of nineteen microalgae collected from different Moroccan reservoirs. Medit Mar Sci. 2016;17(1):323–332.
  • Darki BZ, Seyfabadi J, Fayazi S. Effect of nutrients on total lipid content and fatty acids profile of Scenedesmus obliquus. Brazilian Arch Biol Technol. 2017;60:1–12.
  • Ratha SK, Prasanna R, Prasad RBN, et al. Modulating lipid accumulation and composition in microalgae by biphasic nitrogen supplementation. Aquaculture. 2013;392-395:69–76.
  • Damiani MC, Popovich C a, Constenla D, et al. Triacylglycerol content, productivity and fatty acid profile in Scenedesmus acutus PVUW12. J Appl Phycol. 2014;26(3):1423–1430.
  • Singh D, Sharma D, Soni SL, et al. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel. 2020;262:116553.
  • Lu J, Zhang Z, Fan G, et al. Enhancement of microalgae bio-oil quality via hydrothermal liquefaction using functionalized carbon nanotubes. J Clean Prod. 2021;285:124835.
  • Ramirez JA, Brown RJ, Rainey TJ. A review of hydrothermal liquefaction bio-crude properties and prospects for upgrading to transportation fuels. Energies. 2015;8(7):6765–6794.
  • Yang C, Li R, Cui C, et al. Catalytic hydroprocessing of microalgae-derived biofuels: a review. Green Chem. 2016;18(13):3684–3699.
  • Jones S, Zhu Y, Anderson D, et al. 2014. Process design and economics for the conversion of algal biomass to hydrocarbons: whole algae hydrothermal liquefaction and upgrading (No. PNNL-23227). Pacific Northwest National Laboratory, Richland, WA, United States.
  • Li S, Chen X, Wong MH, et al. Mechanism study on the regulation of metabolite flux for producing promising bioactive substances in microalgae Desmodesmus sp.YT through salinity stress. Algal Res. 2022;64:102721.
  • Mandotra SK, Kumar P, Suseela MR, et al. Fresh water green microalga Scenedesmus abundans: a potential feedstock for high quality biodiesel production. Bioresour Technol. 2014;156:42–47.
  • Nagappan S, Kumar Verma S. Co-production of biodiesel and alpha-linolenic acid (omega-3 fatty acid) from microalgae, Desmodesmus sp. MCC34. Energy Sources Part A Recover Util Environ Eff. 2018;40(24):2933–2940.
  • Renaud SM, Parry DL, Thinh LV. Microalgae for use in tropical aquaculture I: gross chemical and fatty acid composition of twelve species of microalgae from the Northern Territory, Australia. J Appl Phycol. 1994;6(3):337–345.
  • Kaur S, Sarkar M, Srivastava RB, et al. Fatty acid profiling and molecular characterization of some freshwater microalgae from India with potential for biodiesel production. N Biotechnol. 2012;29(3):332–344.
  • Sharma AK, Sahoo PK, Singhal S. Influence of different nitrogen and organic carbon sources on microalgae growth and lipid production. J Pharm Biol Sci. 2015;10:48–53.
  • Heredia-Arroyo T, Wei W, Ruan R, et al. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy. 2011;35(5):2245–2253.
  • Rai MP, Nigam S, Sharma R. Response of growth and fatty acid compositions of Chlorella pyrenoidosa under mixotrophic cultivation with acetate and glycerol for bioenergy application. Biomass Bioenergy. 2013;58:251–257.
  • Bouarab L, Dauta A, Loudiki M. Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose: effect of light and acetate gradient concentration. Water Res. 2004;38(11):2706–2712.
  • Dittamart D, Pumas C, Pekkoh J, et al. Effects of organic carbon source and light-dark period on growth and lipid accumulation of Scenedesmus sp. AARL. Maejo Int J Sci Technol. 2014;8:198–206.
  • Qiao H, Wang G. Effect of carbon source on growth and lipid accumulation in Chlorella sorokiniana GXNN01*. Chin J Ocean Limnol. 2009;27(4):762–768.
  • Haass D, Tanner W. Regulation of hexose transport in Chlorella vulgaris: characteristics of induction and turnover. Plant Physiol. 1974;53(1):14–20.
  • Zhao Z, Ma S, Li A, et al. Effects of trophic modes, carbon sources, and salinity on the cell growth and lipid accumulation of tropic ocean oilgae strain Desmodesmus sp. WC08. Appl Biochem Biotechnol. 2016;180(3):452–463.
  • Zhao G, Yu J, Jiang F, et al. The effect of different trophic modes on lipid accumulation of Scenedesmus quadricauda. Bioresour Technol. 2012;114:466–471.
  • Ngangkham M, Ratha SK, Prasanna R, et al. Biochemical modulation of growth, lipid quality and productivity in mixotrophic cultures of Chlorella sorokiniana. SpringerPlus. 2012;1:33–13.
  • Cho S, Lee D, Luong TT, et al. Effects of carbon and nitrogen sources on fatty acid contents and composition in the green microalga, Chlorella sp. 227. J Microbiol Biotechnol. 2011;21(10):1073–1080.
  • Premaratne M, Liyanaarachchi VC, Nishshanka GKSH, et al. Nitrogen-limited cultivation of locally isolated Desmodesmus sp. for sequestration of CO2 from simulated cement flue gas and generation of feedstock for biofuel production. J Environ Chem Eng. 2021;9(4):105765.
  • Singh J, Jain D, Agarwal P, et al. Auxin and cytokinin synergism augmenting biomass and lipid production in microalgae Desmodesmus sp. JS07. Process Biochem. 2020;95:223–234.
  • Yeh KL, Chang JS. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresour Technol. 2012;105:120–127.
  • Abedini Najafabadi H, Malekzadeh M, Jalilian F, et al. Effect of various carbon sources on biomass and lipid production of Chlorella vulgaris during nutrient sufficient and nitrogen starvation conditions. Bioresour Technol. 2015;180:311–317.
  • Knothe G. “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels. 2008;22(2):1358–1364.
  • Kim G, Mujtaba G, Lee K. Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production. Algae. 2016;31(3):257–266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.