108
Views
0
CrossRef citations to date
0
Altmetric
Articles

Preparation and kinetics study of silica adsorbent derived from geothermal waste impregnated with chitosan for gas separation of CO2 and CH4

ORCID Icon, , , &
Pages 223-233 | Received 26 Jul 2022, Accepted 24 Sep 2022, Published online: 11 Oct 2022

References

  • Fitriana I, Sugiyono A, Wahid Laode MA. Indonesia Energy Outlook 2017, 1st ed. Jakarta: Center for Technology of Energy Resources and Chemical Industry; , 2017, 1–83.
  • Acharya B, Roy P, Dutta A. Review of syngas fermentation processes for bioethanol. Biofuels. 2014;5(5):551–564.
  • Kotoka F, Tulashie SK, Setsoafia DD. Production of bioethanol from liquid waste from cassava dough during gari processing. Biofuels. 2019;10(4):493–501.
  • Melikoglu M, Turkmen B. Food waste to energy: forecasting Turkey’s bioethanol generation potential from wasted crops and cereals till 2030. Sustain Energy Technol Assess. 2019;36(December):100553.
  • Niphadkar S, Bagade P, Ahmed S. Bioethanol production: insight into past, present and future perspectives. Biofuels. 2018;9(2):229–238.
  • Gozmen Şanli B, Uludamar E, Özcanli M. Evaluation of energetic-exergetic and sustainability parameters of biodiesel fuels produced from palm oil and opium poppy oil as alternative fuels in diesel engines. Fuel. 2019;258(December):116116.
  • Adhikari NP, Adhikari RC. Analysis of biogas production potential based on livestock dung availability: a case of household biogas plants in Nepal. Biofuels. 2022;13(6):735–743.
  • Carboni M, Pio G, Vianello C, et al. Safety distances for the sour biogas in digestion plants. Process Saf Environ Protect. 2021;147(March):1–7.
  • Dahlgren S. Biogas-Based fuels as renewable energy in the transport sector: an overview of the potential of using CBG, LBG and other vehicle fuels produced from biogas. Biofuels. 2022;13(5):587–599.
  • Khalil M, Berawi MA, Heryanto R, et al. Waste to energy technology: the potential of sustainable biogas production from animal waste in Indonesia. Renew Sustain Energy Rev. 2019;105(May):323–331.
  • Lok X, Chan YJ, Foo DC. Simulation and optimisation of full-scale palm oil mill effluent (POME) treatment plant with biogas production. J Water Process Eng. 2020;38(December):101558.
  • Dandikas V, Heuwinkel H, Lichti F, et al. Correlation between biogas yield and chemical composition of grassland plant species. Energy Fuels. 2015;29(11):7221–7229.
  • Pazera A, Slezak R, Krzystek L, et al. Biogas in Europe: food and beverage (FAB) waste potential for biogas production. Energy Fuels. 2015;29(7):4011–4021.
  • Zhang C, Bi S, Zhao M, et al. Biogas production performance of different components from banana stems. Energy Fuels. 2016;30(8):6425–6429.
  • Mamun MRA, Torii S. Enhancement of methane concentration by removing contaminants from biogas mixtures using combined method of absorption and adsorption. Int J Chem Eng. 2017;2017:1–9.
  • Kusrini E, Lukita M, Gozan M, et al. Enrichment process of biogas using simultaneous absorption – adsorption methods. AIP Conf Proc. 2017;1826(1). https://doi.org/10.1063/1.4979244.
  • García-Hernández CM, López-Cuevas J, Gutiérrez-Chavarría CA, et al. Use of mechanical activation to obtain Mg(OH)2 from olivine mineral for CO2 capture. Bol Soc Esp Cerám Vidrio. 2021;60(3):163–174.
  • Hairul NAH, Shariff AM, Bustam MA. Process behaviour in a packed absorption column for high pressure CO2 absorption from natural gas using PZ + AMP blended solution. Fuel Process Technol. 2017;157(March):20–28.
  • Chen SJ, Tao ZC, Fu Y, et al. CO2 separation from offshore natural gas in quiescent and flowing states using 13X zeolite. Appl Energy. 2017b;205(vember):1435–1446.
  • Alhassan M, Andrew I, Auta M, et al. Comparative studies of CO2 capture using acid and base modified activated carbon from sugarcane bagasse. Biofuels. 2018;9(6):719–728.
  • Álvarez-Gutiérrez N, García S, Gil MV, et al. Dynamic performance of biomass-based carbons for CO2/CH4 separation. Approximation to a pressure swing adsorption process for biogas upgrading. Energy Fuels. 2016;30(6):5005–5015.
  • Wang K, Shang H, Li L, et al. Efficient CO2 capture on low-cost silica gel modified by polyethyleneimine. J Nat Gas Chem. 2012;21(3):319–323.
  • Li Q, Zhang H, Peng F, et al. Monoethanolamine-modified attapulgite-based amorphous silica for the selective adsorption of CO2 from simulated biogas. Energy Fuels. 2020;34(2):2097–2106.
  • Wang Y, Lu J, Qi J, et al. High selectivity CO2 capture from biogas by hydration separation based on the kinetic difference in the presence of 1,1-dichloro-1-fluoroethane. Energy Fuels. 2021;35(13):10689–10702.
  • Kong Y, Shen X, Cui S, et al. Development of monolithic adsorbent via polymeric sol–gel process for low-concentration CO2 capture. Appl Energy. 2015;147(June):308–317.
  • Guzel Kaya G, Deveci H. Synergistic effects of silica aerogels/xerogels on properties of polymer composites: a review. J Indus Eng Chem. 2020;89(September):13–27.
  • Gurav JL, Jung I-K, Park H-H, et al. Silica aerogel: synthesis and applications. J Nanomaterials. 2010;2010:1–11.
  • Albert E, Cotolan N, Nagy N, et al. Mesoporous silica coatings with improved corrosion protection properties. Microporous Mesoporous Mater. 2015;206(April):102–113.
  • Volentiru E, Nyári M, Szabó G, et al. Silica sol – gel protective coatings against corrosion of zinc substrates. Period Polytech Chem Eng. 2014;58(Supplement):61–66.
  • Sa’adah AN, Milyawan GNA, Nadya T, et al. A mini-review of bio-scrubber derived from bacterial cellulose impregnated by flavonoid of moringa leaves. IOP Conf Ser Earth Environ Sci. 2022;963(1):012022.
  • Ayral A, Julbe A, Roualdes S, et al. Silica membranes – basic principles. Period Polytech Chem Eng. 2006;50(1):67–79.
  • Niu S, Zhang X, Williams GR, et al. Hollow mesoporous silica nanoparticles gated by chitosan-copper sulfide composites as theranostic agents for the treatment of breast cancer. Acta Biomater. 2021;126(May):408–420.
  • Cao S, Yeung KL, Yue P-L. An investigation of trichloroethylene photocatalytic oxidation on mesoporous titania-silica aerogel catalysts. Appl Catal B Environ. 2007;76(1-2):64–72.
  • Siwińska-Ciesielczyk K, Bartlewicz O, Bartczak P, et al. Functional titania–silica/chlorophyllin hybrids: design, fabrication, comprehensive physicochemical characteristic and photocatalytic test. Adsorption. 2019;25(3):485–499.
  • Vaschetto EG, Sicardi MI, Elías VR, et al. Metal modified silica for catalytic wet air oxidation (CWAO) of glyphosate under atmospheric conditions. Adsorption. 2019;25(7):1299–1306.
  • Chihara K, Suzuki Y, Tomita S, et al. Adsorption equilibrium of the mixture of EtOH and TCE on FAU type high silica zeolite. Adsorption. 2011;17(1):201–203.
  • Compañy AD, Juan A, Brizuela G, et al. 5-Fluorouracil adsorption on hydrated silica: density functional theory based-study. Adsorption. 2017;23(2-3):321–325.
  • Maghsoudi H, Aidani A. Experimental adsorption isotherms of CO2 and CH4 on STT zeolite: comparison with high- and pure-silica zeolites. Adsorption. 2017;23(7-8):963–969.
  • Maghsoudi H, Soltanieh M, Bozorgzadeh H, et al. Adsorption isotherms and ideal selectivities of hydrogen sulfide and carbon dioxide over methane for the Si-CHA zeolite: comparison of carbon dioxide and methane adsorption with the all-silica DD3R zeolite. Adsorption. 2013;19(5):1045–1053.
  • Perdigoto MLN, Martins RC, Rocha N, et al. Application of hydrophobic silica based aerogels and xerogels for removal of toxic organic compounds from aqueous solutions. J Colloid Interface Sci. 2012;380(1):134–140.
  • Ismail AA, El-Midany AA, Ibrahim IA, et al. Heavy metal removal using SiO2-TiO2 binary oxide: experimental design approach. Adsorption. 2008;14(1):21–29.
  • Motahari S, Nodeh M, Maghsoudi K. Absorption of heavy metals using resorcinol formaldehyde aerogel modified with amine groups. Desalin Water Treatment. 2015;57(36):1–12.
  • Li C, Zhu J, Zhou M, et al. Investigation on water vapor adsorption of silica-phosphonium ionic liquids hybrid material. Materials. 2019;12(11):1782.
  • Silviana S, Anggoro DD, Salsabila CA, et al. Utilization of geothermal waste as a silica adsorbent for biodiesel purification. Korean J Chem Eng. 2021a;38(10):2091–2105.
  • Fátima Júlio Md, Soares A, Ilharco LM, et al. Aerogel-based renders with lightweight aggregates: correlation between molecular/pore structure and performance. Constr Build Mater. 2016;124(October):485–495.
  • Yi H, Li Y, Tang X, et al. Effect of the adsorbent pore structure on the separation of carbon dioxide and methane gas mixtures. J Chem Eng Data. 2015;60(5):1388–1395.
  • Vazquez NI, Gonzalez Z, Ferrari B, et al. Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications. Bol Soc Esp Cerám Vidrio. 2017;56(3):139–145.
  • Kulkarni SG, Mehendale HM. Carbon dioxide. In: Wexler P, editor. Encyclopedia of toxicology. Cambridge: Academic Press; 2005. p. 419–20. https://doi.org/10.1016/B0-12-369400-0/00182-4.
  • Rao A, Kulkarni MM, Amalnerkar DP, et al. Surface chemical modification of silica aerogels using various alkyl-alkoxy/chloro silanes. Appl Surf Sci. 2003;206(1-4):262–270.
  • Zabeti M, Wan Daud WMA, Aroua MK. Biodiesel production using alumina-supported calcium oxide: an optimization study. Fuel Process Technol. 2010;91(2):243–248.
  • El-Didamony H, El-Fadaly E, Amer AA, et al. Synthesis and characterization of low cost nanosilica from sodium silicate solution and their applications in ceramic engobes. Bol Soc Esp Cerám Vidrio. 2020;59(1):31–43.
  • Silviana S, Noorpasha A, Rahman MM. Preliminary study of chitosan coating silica derived from geotermal solid waste. Civil Eng Architect. 2020a;8(3):281–288.
  • Silviana S, Ma’ruf A. Silicon preparation derived from geothermal silica by reduction using magnesium. Int J Emerg Trends Eng Res. 2020;8(8):4861–4866.
  • Silviana S, Sanyoto GJ, Darmawan A, et al. Geothermal silica waste as sustainable amorphous silica source for the synthesis of silica xerogels. RJC. 2020c;13(3):1692–1700.
  • Santos FD, da Conceição LRV, Ceron A, et al. Chamotte clay as potential low cost adsorbent to be used in the palm kernel biodiesel purification. Appl Clay Sci. 2017;149(December):41–50.
  • Silviana S, Sanyoto GJ, Darmawan A. Preparation of geothermal silica glass coating film through multi-factor optimization. J Teknol. 2021b;83(4):41–49.
  • Bhardwaj A, Hossain SKS, Majhi MR. Preparation and characterization of clay bonded high strength silica refractory by utilizing agriculture waste. Bol Soc Esp Cerám Vidrio. 2017;56(6):256–262.
  • Manique MC, Faccini CS, Onorevoli B, et al. Rice husk ash as an adsorbent for purifying biodiesel from waste frying oil. Fuel. 2012;92(1):56–61.
  • Mathur L, Saddam Hossain SK, Majhi MR, et al. Synthesis of nano-crystalline forsterite (Mg2 SiO4) powder from biomass rice husk silica by solid-state route. Bol Soc Esp Cerám Vidrio. 2018;57(3):112–118.
  • Tan W-C, Yap S-Y, Matsumoto A, et al. Synthesis and characterization of zeolites NaA and NaY from rice husk ash. Adsorption. 2011;17(5):863–868.
  • Shmlls M, Bozsaky D, Horváth T. Literature review on steel fibre, silica fume and fly ash: improving methods for recycled and multiple recycled aggregate concretes. Acta Tech Jaurinensis. 2021;14(1):60–79.
  • Imoisili PE, Ukoba KO, Jen T-C. Synthesis and characterization of amorphous mesoporous silica from palm kernel shell ash. Bol Soc Esp Cerám Vidrio. 2020;59(4):159–164.
  • Jian LI, Caichao WAN, Yun LU, et al. Fabrication of cellulose aerogel from wheat straw with strong absorptive capacity. Front Agr Sci Eng. 2014;1(1):46.
  • Silviana S, Darmawan A, Dalanta F, et al. Superhydrophobic coating derived from geothermal silica to enhance material durability of bamboo using hexadimethylsilazane (HMDS) and trimethylchlorosilane (TMCS). Materials. 2021c;14(3):530.
  • Silviana S, Darmawan A, Subagio A, et al. Statistical approaching for superhydrophobic coating preparation using silica derived from geothermal solid waste. AJChE. 2020d;19(2):91.
  • Silviana S, Darmawan A, Janitra AA, et al. Synthesized silica mesoporous from silica geothermal assisted with CTAB and modified by APTMS. Int J Emerg Trends Eng Res. 2020e;8(8):4854–4860.
  • Yong X, Tse JS, Chen J. Mechanism of chemical reactions between SiO2 and CO2 under mantle conditions. ACS Earth Space Chem. 2018;2(6):548–555.
  • Wagner A, Steen B, Johansson G, et al. Carbon dioxide capture from ambient air using amine-grafted mesoporous adsorbents. Int J Spectrosc. 2013;2013(April):1–8.
  • Chen Y, Jiang W, Luo X, et al. The study of kinetics of CO2 absorption into 3-dimethylaminopropylamine and 3-diethylaminopropylamine aqueous solution. Int J of Greenhouse Gas Control. 2018;75(August):214–223.
  • Yu L, Kanezashi M, Nagasawa H, et al. Role of amine type in CO2 separation performance within amine functionalized silica/organosilica membranes: a review. Appl Sci. 2018;8(7):1032.
  • Carvalho LSd, Silva E, Andrade JC, et al. Low-Cost mesoporous adsorbents amines-impregnated for CO2 capture. Adsorption. 2015;21(8):597–609.
  • Chen C, Zhang S, Ho Row K, et al. Amine–silica composites for CO2 capture: a short review. J Energy Chem. 2017a;26(5):868–880.
  • Zhang S, Chen C, Ahn WS. Recent progress on CO2 capture using amine-functionalized silica. Curr Opin Green Sustain Chem. 2019;16:26–32.
  • Deng S, Hu B, Chen T, et al. Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption. Adsorption. 2015;21(1-2):125–133.
  • Firdaus RM, Desforges A, Mohamed AR, et al. Progress in adsorption capacity of nanomaterials for carbon dioxide capture: a comparative study. J Cleaner Prod. 2021;328(May):129553.
  • Maroto-Valer MM, Tang Z, Zhang Y. CO2 capture by activated and impregnated anthracites. Fuel Process Technol. 2005;86(14-15):1487–1502.
  • Younas M, Sohail M, Leong LK, et al. Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems. Int J Environ Sci Technol. 2016;13(7):1839–1860.
  • Elhambakhsh A, Heidari S, Keshavarz P. Experimental study of carbon dioxide absorption by Fe2O3@glutamine/NMP nanofluid. Environ Sci Pollut Res. 2022;29(1):1060–1072.
  • Marliza TS, Yarmo MA, Hakim A, et al. Characterizations and application of supported ionic liquid [bmim][CF3SO3]/SiO2 in CO2 capture. MSF. 2017;888(March):485–490.
  • Wang L, Al-Aufi M, Pacheco CN, et al. Polyethylene glycol (PEG) addition to polyethylenimine (PEI)-impregnated silica increases amine accessibility during CO2 sorption. ACS Sustain Chem Eng. 2019;7(17):14785–14795.
  • Sneddon G, Ganin AY, Yiu HHP. Sustainable CO2 adsorbents prepared by coating chitosan onto mesoporous silicas for large‐scale carbon capture technology. Energy Technol. 2015;3(3):249–258.
  • He H, Meng X, Yue Q, et al. Thiol-ene click chemistry synthesis of a novel magnetic mesoporous silica/chitosan composite for selective Hg(II) capture and high catalytic activity of spent Hg(II) adsorbent. Chem Eng J. 2021;405(February):126743.
  • Silviana S, Purbasari A, Siregar A, et al. Synthesis of mesoporous silica derived from geothermal waste with cetyl trimethyl ammonium bromide (CTAB) surfactant as drug delivery carrier. AIP Conf Proc. 2020b;2296:020083. https://doi.org/10.1063/5.0030487.
  • Gil MV, Rubiera F, Pevida C. Kinetics of CO2 adsorption on cherry stone-based carbons in CO2/CH4 separations. Chem Eng J. 2017;307:249–257.
  • Ivanova N, Gugleva V, Dobreva M, et al. Silver nanoparticles as multi-functional drug delivery systems. In: Farrukh M, editor. Nanomedicines. London: IntechOpen; 2018. https://doi.org/10.5772/intechopen.75342.
  • Zhou Y-y, Li X-X, Chen Z-x. Rapid synthesis of well-ordered mesoporous silica from sodium silicate. Powder Technol. 2012;226:239–245.
  • Rafigh SM, Heydarinasab A. Mesoporous chitosan-SiO2 nanoparticles: synthesis, characterization, and CO2 adsorption capacity. ACS Sustain Chem Eng. 2017;5(11):10379–10386.
  • Budnyak TM, Pylypchuk IV, Tertykh VA, et al. Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method. Nanoscale Res Lett. 2015;10(1):87.
  • Salmón I, Cambier N, Luis P. CO2 capture by alkaline solution for carbonate production: a comparison between a packed column and a membrane contactor. Appl Sci. 2018;8(6):996.
  • Jin C, Han S, Li J, et al. Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents. Carbohydr Polym. 2015;123:150–156.
  • Wan C, Lu Y, Jiao Y, et al. Cellulose aerogels from cellulose-NaOH/PEG solution and comparison with different cellulose contents. Mater Sci Technol. 2015;31(9):1096–1102.
  • He F, He X, Yang W, et al. In-Situ synthesis and structural characterization of cellulose-silica aerogels by one-step impregnation. J Non-Crystall Solids. 2018;488(November 2017):36–43.
  • Lee SE, Ahn YS, Lee JS, et al. Ambient-pressure drying synthesis of high-performance silica aerogel powders by controlling hydrolysis reaction of water glass. J Ceram Process Res. 2017;18(11):777–782.
  • Guo B, Wang Y, Shen X, et al. Study on CO2 capture characteristics and kinetics of modified potassium-based adsorbents. Materials. 2020;13(4):877.
  • Irvan BT, Maulina S, Rivaldi Sidabutar I, et al. Adsorption-desorption system for CO2 removal in biogas using natural zeolite-based adsorbent. J Eng Sci Technol. 2018;13(10):3058–3070.
  • Behera SK, Meena H, Chakraborty S, et al. Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. Int J Min Sci Technol. 2018;28(4):621–629.
  • Costa NR, Lourenço J, Pereira ZL. Desirability function approach: a review and performance evaluation in adverse conditions. Chemom Intell Lab Syst. 2011;107(2):234–244.
  • Sun Y, Liu W, Wang X, et al. Enhanced adsorption of carbon dioxide from simulated biogas on PEI/MEA-functionalized silica. Int J Environ Res Public Health. 2020;17(4):1452.
  • Xu X, Zhao X, Sun L, et al. Adsorption separation of carbon dioxide, methane and nitrogen on monoethanol amine modified β-zeolite. J Nat Gas Chem. 2009;18(2):167–172.
  • Yang H, Li W, Liu J, et al. Polyethylenimine-impregnated resins: the effect of support structures on selective adsorption for CO2 from simulated biogas. Chem Eng J. 2019;355(January):822–829.
  • Villanueva-Espinosa JF, Hernández-Esparza M, Ruiz-Treviño FA. Adsorptive properties of fish scales of Oreochromis niloticus (Mojarra tilapia) for metallic ion removal from waste water. Ind Eng Chem Res. 2001;40(16):3563–3569.
  • Tira HS, Padang YA. Removal of CO2 and H2S from raw biogas using activated natural zeolite. AIP Conf Proc. 2016;1778(030006).
  • Serrano-Ruiz JC. Advanced biofuels: using catalytic routes for the conversion of biomass platform molecules. London: Taylor & Francis; 2015.
  • Ebisike K, Okoronkwo AE, Alaneme KK. Synthesis and characterization of chitosan–silica hybrid aerogel using sol-gel method. J King Saud Univ Sci. 2020;32(1):550–554.
  • Gao F, Huang J, Sun H, et al. CO2 capture using mesocellular siliceous foam (MCF)-supported CaO. J Energy Inst. 2019;92(5):1591–1598.
  • Donohue MD, Aranovich GL. Classification of Gibbs adsorption isotherms. Adv Colloid Interface Sci. 1998;76-77(July):137–152.
  • Yan KL, Wang Q. Adsorption characteristics of the silica gels as adsorbent for gasoline vapors removal. IOP Conf Ser Earth Environ Sci. 2018;153(2):022010.
  • Loganathan S, Tikmani M, Edubilli S, et al. CO2 adsorption kinetics on mesoporous silica under wide range of pressure and temperature. Chem Eng J. 2014;256(November):1–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.