148
Views
0
CrossRef citations to date
0
Altmetric
Articles

Energy viability of industrial drying of wood chips

ORCID Icon, ORCID Icon & ORCID Icon
Pages 259-266 | Received 27 Jun 2022, Accepted 01 Oct 2022, Published online: 13 Oct 2022

References

  • Alamia A, Ström H, Thunman H. Design of an integrated dryer and conveyor belt for woody biofuels. Biomass Bioenergy. 2015;77:92–109.
  • Mohseni M, Kolomijtschuk A, Peters B, et al. Biomass drying in a vibrating fluidized bed dryer with a Lagrangian-Eulerian approach. Int J Therm Sci. 2019;138:219–234.
  • Simioni FJ, Hoeflich VA. Cadeia produtiva de energia de biomassa na região do planalto sul de Santa Catarina: uma abordagem prospectiva. Rev Árvore. 2010;34(6):1091–1099.
  • Simioni FJ, Buschinelli CCA, Deboni TL, et al. Cadeia produtiva de energia de biomassa florestal: o caso da lenha de eucalipto no polo produtivo de Itapeva - SP. Ciênc Florestal. 2018;28(1):310–323.
  • Vasković S, Halilović V, Gvero P, et al. Multi-criteria optimization concept for the selection of optimal solid fuels supply chain from wooden biomass. Croat J For Eng. 2015;36:109–123. https://hrcak.srce.hr/136140.
  • Kudra T. Energy aspects in drying. Drying Technol. 2004;22(5):917–932.
  • Lora ES, Andrade RV. Biomass as energy source in Brazil. Renewable Sustainable Energy Rev. 2009;13(4):777–788. (
  • Phanphanich M, Mani S. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour Technol. 2011;102(2):1246–1253.
  • Shahrukh H, Oyedun AO, Kumar A, et al. Techno-economic assessment of pellets produced from steam pretreated biomass feedstock. Biomass Bioenergy. 2016;87:131–143.
  • Stolarski MJ, Szczukowski S, Tworkowski J, et al. Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass. Renewable Energy. 2013;57:20–26.
  • González-Arias J, Gómez X, González-Castaño M, et al. Insights into the product quality and energy requirements for solid biofuel production: a comparison of hydrothermal carbonization, pyrolysis and torrefaction of olive tree pruning. Energy. 2022;238(238):122022.
  • Li J, Dou B, Zhang H, et al. Pyrolysis characteristics and non-isothermal kinetics of waste wood biomass. Energy. 2021;226:120358.
  • Lin YL, Zheng NY, Lin CS. Repurposing washingtonia filifera petiole and sterculia foetida follicle waste biomass for renewable energy through torrefaction. Energy. 2021;223:120101.
  • Kutlu O, Kocar G. Upgrading lignocellulosic waste to fuel by torrefaction: characterisation and process optimization by response surface methodology. Int J Energy Res. 2018;42(15):4746–4760.
  • Manouchehrinejad M, Yue Y, de Morais RAL, et al. Densification of thermally treated energy cane and napier grass. BioEnergy Res. 2018;11(3):538–550.
  • Keivani B, Gultekin S, Olgun H, et al. Torrefaction of pine wood in a continuous system and optimization of torrefaction conditions. Int J Energy Res. 2018;42(15):4597–4609.
  • Hu J, Jiang B, Wang J, et al. Physicochemical characteristics and pyrolysis performance of corn stalk torrefied in aqueous ammonia by microwave heating. Bioresour Technol. 2019;274:83–88.
  • Singh RK, Sarkar A, Chakraborty JP. Effect of torrefaction on the physicochemical properties of pigeon pea stalk (Cajanus cajan) and estimation of kinetic parameters. Renewable Energy. 2019;138:805–819.
  • López R, González-Arias J, Pereira FJ, et al. A techno-economic study of HTC processes coupled with power facilities and oxy-combustion systems. Energy. 2021;219:119651.
  • Deboni TL, Simioni FJ, Brand MA, et al. Evolution of the quality of Forest biomass for energy generation in a cogeneration plant. Renewable Energy. 2019;135:1291–1302.
  • Simioni FJ, Jarenkow GL, Silva KF, et al. Eco‐efficiency in the transformation of Forest biomass residues in electrical energy. Clean Technol Environ Policy. 2021;23(5):1443–1456.
  • Pecenka R, Lenz H, Idler C. Influence of the chip format on the development of mass loss, moisture content and chemical composition of poplar chips during storage and drying in open-air piles. Biomass Bioenergy. 2018;116:140–150.
  • Khan AA, Jong W, Jansens PJ, et al. Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Process Technol. 2009;90(1):21–50.
  • Brammer JG, Bridgwater A. The influence of feedstock drying on the performance and economics of a biomass gasifier-engine CHP system. Biomass Bioenergy. 2002;22(4):271–281.
  • Amos WA. Report on biomass drying technology. National Renewable Energy Laboratory; 1998. Available from: https://www.nrel.gov/docs/fy99osti/25885.pdf.
  • Malek ABMA, Hasanuzzaman M, Rahim NA, et al. Techno-economic analysis and environmental impact assessment of a 10 MW biomass-based power plant in Malaysia. J Clean Prod. 2017;141:502–513.
  • Verma M, Loha C, Sinha AN, et al. Drying of biomass for utilising in co-firing with coal and its impact on environment – a review. Renewable Sustainable Energy Rev. 2017;71:732–741.
  • Brand MA, Muñiz GIBM, Brito JO, et al. Influence of size and shape of forest biomass, stored in piles, on quality of wood fuel. Rev Árvore. 2014;38(1):175–183.
  • Del Giudice A, Acampora A, Santangelo E, et al. Wood chip drying through the using of a mobile rotary dryer. Energies. 2019;12(9):1590.
  • Scherer V, Mönnigmann M, Berner MO, et al. Coupled DEM–CFD simulation of drying wood chips in a rotary drum – baffle design and model reduction. Fuel. 2016;184:896–904.
  • Marques A, Rasinmäki J, Soares R, et al. Planning woody biomass supply in hot systems under variable chips energy content. Biomass Bioenergy. 2018;108:265–277.
  • Gebreegziabher T, Oyedun AO, Hui CW. Optimum biomass drying for combustion: a modeling approach. Energy. 2013;53:67–73.
  • Arabi M, Faezipour MM, Layeghi M, et al. Evaluation of thin-layer models for describing drying kinetics of poplar wood particles in a fluidized bed dryer. Part Sci Technol. 2017;35(6):723–730.
  • Brand MA, Giesel G. Influência da secagem da biomassa na eficiência de caldeira de cogeração energética. Energia Agric. 2017;32(2):132–140.
  • Silva J, Ferreira AC, Teixeira S, et al. Sawdust drying process in a large-scale pellets facility: an energy and exergy analysis. Clean Environ Syst. 2021;2:100037.
  • Bianchini DC, Simioni FJ. Economic and risk assessment of industrial wood chip drying. Sustainable Energy Technol Assess. 2021;44:101016.
  • IBGE - Instituto Brasileiro de Geografia e Estatística. Produção da Extração Vegetal e da Silvicultura - PEVS. Principais resultados; 2020. Available from: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9105-producao-da-extracao-vegetal-e-da-silvicultura.html?=&t=resultados.
  • IBA - Indústria Brasileira de Árvores. Annual report 2020. São Paulo: FGV/IBRE; 2020. Available from: https://iba.org/datafiles/publicacoes/relatorios/relatorio-iba-2020.pdf.
  • Simioni FJ, Hoeflich VA. Biomass productive chain from Forest origin in the Southern Plateau of Santa Catarina. Floresta. 2009;39(3):501–510. [Mismatch
  • Silva FA, Simioni FJ, Hoff DN. Diagnosis of circular economy in the Forest sector in Southern Brazil. Sci Total Environ. 2020;706:135973.
  • Brand MA. Energia de biomassa florestal. Rio de Janeiro: Interciência; 2010.
  • Brand MA, Muñiz GIB, Quirino WF, et al. Storage as a tool to improve wood fuel quality. Biomass Bioenergy. 2011;35(7):2581–2588.
  • Brand MA, Brito JO, Quirino WF, et al. Influência da época de estocagem na qualidade da biomassa florestal Para a geração de energia. Floresta. 2012;42(2):369–380.
  • Brand MA. Influence of species in the quality of Forest biomass in storage, for energy generation. Ambiência. 2013;9(3):461–474.
  • Carroll JP, Finnan J. Physical and chemical properties of pellets from energy crops and cereal straws. Biosyst Eng. 2012;112(2):151–159.
  • Oliveira LH, Barbosa PVG, Lima PAF, et al. Use of wood residues of pinus sp. with different granulometry to briquettes production. Rev Ciênc Agrár. 2017;40(3):683–691.
  • Protásio TP, Trugilho PF, Siqueira HF, et al. Energy characterization of fresh and torrified pellets produced from pinus waste wood. Braz J For Res. 2015;35:435–442. [Mismatch
  • BEN – Brazilian Energy Balance 2021– Year 2020. Empresa de Pesquisa Energética. Rio de Janeiro: EPE; 2021. Available from: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-601/topico-596/BEN2021.pdf.
  • ANP - Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. Oil, natural gas and biofuels statistical yearbook 2021. Available from: https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/anuario-estatistico/oil-natural-gas-and-biofuels-statistical-yearbook-2021.
  • Perazzini H, Perazzini MT, Freire FB, et al. Modeling and cost analysis of drying of citrus residues as biomass in rotary dryer for bioenergy. Renewable Energy. 2021;175:167–178.
  • Perazzini H, Freire FB, Freire FB, et al. Thermal treatment of solid wastes using drying technologies: a review. Drying Technol. 2016;34(1):39–52.
  • Kouloukoui D, de Marcellis-Warin N, Armellini F, et al. Factors influencing the perception of exposure to climate risks: Evidence from the world’s largest carbon-intensive industries. J Clean Prod. 2021;306:127160.
  • Ferreira de Campos RF, Rosa LD, Borga T. Análise do processo de co-combustão da biomassa, através da influência da umidade do cavaco na emissão de contaminantes atmosféricos, eficiência energética e geração de cinzas. Rev Bras Geogr Fis. 2017;10(5):1471–1480.
  • Loução PO, Ribau JP, Ferreira AF. Life cycle and decision analysis of electricity production from biomass – Portugal case study. Renewable Sustainable Energy Rev. 2019;108:452–480.
  • Weldu YW, Assefa G, Jolliet O. Life cycle human health and ecotoxicological impacts assessment of electricity production from wood biomass compared to coal fuel. Appl Energy. 2017;187:564–574.
  • Costa VAF, Tarelho LAC, Sobrinho A. Mass, energy and exergy analysis of a biomass boiler: a portuguese representative case of the pulp and paper industry. Appl Therm Eng. 2019;152:350–361.
  • Deboni TL, Simioni FJ, Brand MA, et al. Models for estimating the price of Forest biomass used as an energy source: a Brazilian case. Energy Policy. 2019;127:382–391.
  • Swithenbank J, Chen Q, Zhang X, et al. Wood would burn. Biomass Bioenergy. 2011;35(3):999–1007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.