2,856
Views
0
CrossRef citations to date
0
Altmetric
Articles

Bioethanol processing from wheat straw: investment appraisal of a full-scale UK biofuel refinery

ORCID Icon &
Pages 267-277 | Received 07 Apr 2022, Accepted 01 Oct 2022, Published online: 13 Oct 2022

References

  • Hammond GP, Mansell RV. A comparative thermodynamic evaluation of bioethanol processing from wheat straw. Appl Energy. 2018;224:136–146.
  • Climate Change Act 2008 [CCA]. 2050 Target Amendment Order. The Stationary Office Limited, London, UK, Order N.o. 1056; 2019.
  • European Parliament [EP]. The European green deal. EP, Brussels, Belgium: EP Document P9_TA(2020)0005; 2020.
  • Department for Transport [DfT]. Transport and environment statistics – 2021 annual report. London, UK: DfT; 2021.
  • Hammond GP, Kallu S, McManus MC. The development of biofuels for the UK automotive market. Appl Energy. 2008;85(6):506–515.
  • International Energy Agency [IEA]. Future biomass-based transport fuels – summary and conclusions from the IEA bioenergy ExCo67 workshop. Paris, France: Organisation of economic Co-operation and development (OECD)/IEA; 2012.
  • International Energy Agency [IEA]. Technology roadmap: biofuels for transport. Paris, France: Organisation of Economic Co-operation and Development (OECD)/IEA; 2011.
  • Hammond GP, Seth SM. Carbon and environmental footprinting of global biofuel production. Appl Energy. 2013;112:547–559.
  • Hammond GP, Li B. Environmental and resource burdens associated with world biofuel production out to 2050: footprint components from carbon emissions and land use to waste arisings and water consumption. Glob Change Biol Bioenergy. 2016;8(5):894–908.
  • Slade R, Bauen A, Shah N. The commercial performance of cellulosic ethanol supply-chains in Europe. Biotechnol Biofuels. 2009;2(1):3–20.
  • Fairley P. Next generation biofuels. Nature Outlook – Biofuels. 2011;474(7352):S2–S5.
  • International Energy Agency [IEA]. Renewables 2020: Analysis and forecast to 2025. Paris, France: Organisation of Economic Co-operation and Development (OECD)/IEA; 2020.
  • Glithero NJ, Wilson P, Ramsden SJ. Straw use and availability for second generation biofuels in England. Biomass Bioenergy. 2013;55:311–321.
  • Glithero NJ, Ramsden SJ, Wilson P. Barriers and incentives to the production of bioethanol from cereal straw: a farm business perspective. Energy Policy. 2013;59(100):161–171.
  • Townsend TJ, Sparkes DL, Ramsden SJ, et al. Wheat straw availability for bioenergy in England. Energy Policy. 2018;122:349–357.
  • Lozano P, Bernal B, Recio I, et al. A cyclic process for full enzymatic saccharification of pretreated cellulose with full recovery and reuse of the ionic liquid 1-butyl-3-methylimidazolium chloride. Green Chem. 2012;14(9):2631–2637.
  • Wilson DB. Cellulases and biofuels. Curr Opin Biotechnol. 2009;20(3):295–299.
  • Chandra RP, Bura R, Mabee WE, et al. Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Advances in Biochemical Engineering/Biotechnology. 2007;108:67–93.
  • Talebnia F, Karakashev D, Angelidaki I. Angelidaki, I. Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol. 2010;101(13):4744–4753.
  • Zheng Y, Pan Z, Zhang R. Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng. 2009;2(3):51–68.
  • Taherzadeh MJ, Karimi K. Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources. 2007;2(4):707–738.
  • Kumar P, Barrett DM, Delwiche MJ, et al. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res. 2009;48(8):3713–3729.
  • Balat M, Balat H, Öz C. Progress in bioethanol processing. Prog Energy Combust Sci. 2008;34(5):551–573.
  • Erdei B, Frankó B, Galbe M, et al. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw. Biotechnol Biofuels. 2012;5(1):12.
  • Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 2004;66(1):10–26.
  • McKendry P. Energy production from biomass (part 2): conversion technologies. Bioresour Technol. 2002;83(1):47–54.
  • Allen PE, Hammond GP. Bioenergy utilization for a low carbon future in the UK: the evaluation of some alternative scenarios and projections. BMC Energy. 2019;1(1):3.
  • Mood SH, Golfeshan AH, Tabatabaei M, et al. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable Sustainable Energy Rev. 2013;27:77–93.
  • Khoo HH. Review of bio-conversion pathways of lignocellulose-to-ethanol: sustainability assessment based on land footprint projections. Renewable Sustainable Energy Rev. 2015;46:100–119.
  • Kumar R, Tabatabaei M, Karimi K, et al. Recent updates on lignocellulosic biomass derived ethanol – a review. Biofuel Res. J. 2016;3(1):347–356.
  • Gross R, Leach M, Bauen A. Progress in renewable energy. Environ Int. 2003;29(1):105–122.
  • Davies SM, Linforth RS, Wilkinson SJ, et al. Rapid analysis of formic acid, acetic acid, and furfural in pretreated wheat straw hydrolysates and ethanol in a bioethanol fermentation using atmospheric pressure chemical ionisation mass spectrometry. Biotechnol Biofuels. 2011;4:28.
  • Wimalasena TT, Greetham D, Marvin ME, et al. Phenotypic characterisation of saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol. Microb Cell Fact. 2014;13(1):47.
  • Chandel AK, Chandrasekhar G, Radhika K, et al. Bioconversion of pentose sugars into ethanol: a review and future directions. Biotechnol Mol Biol Rev. 2011;6(1):8–20.
  • Faaij A. Modern biomass conversion technologies. Mitig Adapt Strat Glob Change. 2006;11(2):343–375.
  • Mabee WE, McFarlane PN, Saddler JN. Biomass availability for lignocellulosic ethanol production. Biomass Bioenergy. 2011;35(11):4519–4529.
  • Gupta A, Verma JP. Sustainable bio-ethanol production from agro-residues: a review. Renew Sustain Energy Rev. 2015;41:550–567.
  • Albashabsheh NT, Stamm JLH. Optimization of lignocellulosic biomass-to-biofuel supply chains with densification: literature review. Biomass Bioenergy. 2021;144:105888.
  • Kaparaju P, Serrano M, Thomsen AB, et al. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol. 2009;100(9):2562–2568.
  • Kumar B, Verma P. Biomass-based biorefineries: an important architype towards a circular economy. Fuel. 2021;288:119622.
  • Nanda S, Azargohar R, Dalai AK, et al. An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew Sustain Energy Rev. 2015;50:925–941.
  • Prasad S, Singh A, Korres NE, et al. Sustainable utilization of crop residues for energy generation: a life cycle assessment (LCA) perspective. Bioresour Technol. 2020;303:122964.
  • Hammond GP, Jones CI, O'Grady Á. Environmental life cycle assessment (LCA) of energy systems. In: Yan, J. (ed.) Handbook of clean energy systems. Vol. 6. Chichester, UK: John Wiley and Sons; 2015. 3343–3368.
  • British Standards Institution [BSI]. Sustainability criteria for the production of biofuels and bioliquids for energy applications – principles, criteria, indicators and verifiers. Part 1: Terminology. London, UK: BS EN 16214-1. BSI; 2020.
  • British Standards Institution [BSI]. Sustainability criteria for the production of biofuels and bioliquids for energy applications – principles, criteria, indicators and verifiers. Part 2: Conformity assessment including chain of custody and mass balance. London, UK: BS CEN TS 16214-2. BSI; 2020.
  • British Standards Institution [BSI]. Sustainability criteria for the production of biofuels and bioliquids for energy applications – principles, criteria, indicators and verifiers. Part 3: Biodiversity and environmental aspects related to nature protection purposes. London, UK: BS EN 16214-3. BSI; 2012.
  • British Standards Institution [BSI]. Sustainability criteria for the production of biofuels and bioliquids for energy applications – principles, criteria, indicators and verifiers. Part 4: Calculation methods of the greenhouse gas emission balance using a life cycle analysis approach. London, UK: BS EN 16214-4. BSI; 2019.
  • Awasthi MK, Sarsaiya S, Patel A, et al. Refining biomass residues for sustainable energy and bio-products: an assessment of technology, its importance, and strategic applications in circular bio-economy. Renew Sustain Energy Rev. 2020;127:109876.
  • Humbird D, Davis R, Tao L, et al. Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. National Renewable Energy Laboratory (NREL), Golden, Colorado, USA, Technical Report NREL/TP-5100-47764; 2011.
  • Department for Environment Food and Rural Affairs [Defra]. Crop map of England (CROME) 2019. London, UK: Defra; 2021. https://environment.data.gov.uk/dataset/b498a2be-f3de-49fb-91a4-3381bb3868c2 (accessed 28 February 2022).
  • Agriculture and Horticulture Development Board [AHDB]. UK human and industrial cereal usage. Kenilworth, Warwickshire, UK: AHDB; 2022.
  • McMillan J, Saddler J, Ebadian M. Commercialising Conventional and Advanced Liquid Biofuels from Biomass. Report to IEA Bioenergy Task 39. Organisation of Economic Co-operation and Development (OECD)/IEA, Paris, France; 2019.
  • Road Haulage Association (RHA). Cost tables. Peterborough, UK: RHA; 2014.
  • Brent RJ. Applied cost-benefit analysis. Cheltenham, UK: Edward Elgar Publishing; 1996.
  • Dorfman R, Dorfman NS. (eds). Economics of the environment. 3rd Edition. Norton: New York, USA; 1993.
  • Hammond GP, Winnett AB. Interdisciplinary perspectives on environmental appraisal and valuation techniques. Proc Instn Civil Engrs: Waste Res Manag. 2006;159(3):117–130.
  • Allen SR, Hammond GP, Harajli HA, et al. Integrated appraisal of micro-generators: methods and applications. Proc Instn Civil Engrs: Energy. 2008;161(2):73–86.
  • Kohyama H. Selecting discount rates for budgetary purposes. Cambridge, MA, USA: Harvard Law School; 2006.
  • HM Treasury [HMT]. The green book: Central government guidance on appraisal and evaluation. London, UK: Her Majesty's treasury; 2020.
  • The Chemical Engineering Plant Cost Index [CEPCI]. Chemical Engineering magazine, New York, NY, USA; 2022. https://www.chemengonline.com/pci-home. (accessed 28 February 2022).
  • United Kingdom Petroleum Industry Association [UKPIA]. Briefing paper – understanding pump prices. London, UK: UKPIA; 2017.
  • United Kingdom Petroleum Industry Association [UKPIA]. Briefing paper – biofuels in the UK. London, UK: UKPIA; 2009.
  • Voytenko Y, Peck P. Organisational frameworks for straw-based energy systems in Sweden and Denmark. Biomass Bioenergy. 2012;38:34–48.
  • Butcher L. Lorry sizes and weights. London, UK: House of Commons Library. Standard Note SN/BT/654; 2009.
  • Hamelinck NC, Hooijdonk G, Faaij, AP, C. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy. 2005;28(4):384–410.
  • Gnansounou E, Dauriat A. Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol. 2010;101(13):4980–4991.
  • Towler GP. Chemical engineering design: principles, practice and economics of plant and process design. Amsterdam; London: Elsevier; 2008.
  • Ghatak HR. Bio refineries from the perspective of sustainability: feedstocks, products, and processes. Renewable Sustainable Energy Rev. 2011;15(8):4042–4052.
  • Kenney KL, Smith WA, Gresham GL, et al. Understanding biomass feedstock variability. Biofuels. 2013;4(1):111–127.
  • Hayes DJ. An examination of biorefining processes, catalysts and challenges. Catal Today. 2009;145(1–2):138–151.
  • KPMG International. Cost of capital study 2011/12 – developments in volatile markets. Amstelveen, Netherlands: KPMG International; 2012.
  • E4tech. Advanced drop-in biofuels: UK production capacity outlook to 2030. E4tech Ltd for the UK Department of Transport in partnership with TRL, Temple and Scarlett Research. PPRO 04/75/17. London, UK; 2017.
  • Tester JW, Drake EM, Driscoll MJ, et al. Sustainable energy: choosing among options. Cambridge, MA, USA: MIT Press; 2005.
  • Griffin PW, Hammond GP, Norman JB. Industrial energy use and carbon emissions reduction in the chemicals sector: a UK perspective. Appl Energy. 2018;227:587–602.
  • The Royal Society [RoySoc]. Sustainable biofuels: prospects and challenges. Policy Document 01/08, No. 22. London, UK: The Royal Society; 2008.
  • Royal Academy of Engineering [RAEng]. Sustainability of liquid biofuels. London, UK: RAEng; 2017.
  • Cooper SJG, Hammond GP. Decarbonising’ UK industry: towards a cleaner economy. Proc Instn Civil Engrs: Energy. 2018;171(4):147–157.
  • Patel M, Crank M, Dornburg V, et al. Medium and long-term opportunities and risks of the biotechnological production of bulk chemicals from renewable resources – the potential of white biotechnology. Utrecht, The Netherlands: The BREW Project. Utrecht University; 2006.