207
Views
1
CrossRef citations to date
0
Altmetric
Review

A retrospect on recent research works in the preparation of zeolites catalyst from kaolin for biodiesel production

, , , &
Pages 315-332 | Received 25 Jul 2022, Accepted 01 Oct 2022, Published online: 11 Oct 2022

References

  • Ghasemian S, Faridzad A, Abbaszadeh P, et al. An overview of global energy scenarios by 2040: identifying the driving forces using cross-impact analysis method. Int J Environ Sci Technol. 2020.
  • IEA. Oil Market Report - May 2021, International Energy Agency, Paris; 2021. https://www.iea.org/reports/oil-market-report-may-2021.
  • Olivier JGJ, Peters J. Trends in global and total greenhouse gas emissions- 2019 report, PBL Netherlands Environmental Assessment Agency, 1–70. 2020. https://www.pbl.nl/sites/default/files/downloads/pbl-2020-trends-in-global-co2-and-total-greenhouse-gas-emissions-2019-report_4068.pdf.
  • Ogunkunle O, Ahmed NA. Overview of biodiesel combustion in mitigating the adverse impacts of engine emissions on the sustainable human–environment scenario. Sustainability. 2021;13(10):5465–5495.
  • Kumar J CR, Majid MA. Renewable energy for sustainable development in India: current status, future prospects, challenges, employment, and investment opportunities. Energ Sustain Soc. 2020;10(1):1–20.
  • Garba MU, Oloruntoba MJ, Isah AG, et al. Production of solid fuel from rice straw through torrefaction process. Int J Sci Eng Investig. 2015;4(37):1–6.
  • Tong C. Introduction to materials for advanced energy systems. Berlin: Springer, 2018. 1–911.
  • Ayoub M, Yusoff MHM, Nazir MH, et al. A comprehensive review on oil extraction and biodiesel production technologies. Sustainability. 2021;13(2):788–806.
  • Esfarjani F, Khoshtinat K, Zargaraan A, et al. Evaluating the rancidity and quality of discarded oils in fast food restaurants. Food Sci Nutr. 2019;7(7):2302–2311.
  • Thangaraj B, Solomon PR, Muniyandi B, et al. Catalysis in biodiesel production–a review. Clean Energy. 2019;3(1):2–23.
  • Narowska BE, Kułażyński M, Łukaszewicz M. Application of activated carbon to obtain biodiesel from vegetable oils. Catalysts. 2020;10(9):1049–1079.
  • Lv L, Dai L, Du W, et al. Progress in enzymatic biodiesel production and commercialization. Processes. 2021;9(2):355–310.
  • Mierczynski P, Szkudlarek L, Chalupka K, et al. The effect of the activation process and metal oxide addition (cao, mgo, sro) on the catalytic and physicochemical properties of natural zeolite in transesterification reaction. Materials. 2021;14(9):2415–2417.
  • Babic V. Increasing the porosity of zeolites Catalysis. Ph.D thesis Normandie Université; 2021 https://tel.archives-ouvertes.fr/tel-03167919.
  • Maciver V, Dagde K, Konne J. Synthesis of zeolite X from locally sourced kaolin clay from Kono-Boue and Chokocho, Rivers state, Nigeria. ACES. 2020;10(04):399–407.
  • Brett W. An overview of alternative fuels for commercial transportation. Breakthrough- Sustainability and Tech. 2021, April 20;13:12. [cited 2022 February 3]. Available from: https://www.breakthroughfuel.com/blog/overview-alternative-transportation-fuels
  • Wu G, Ge JC, Choi NJ. A comprehensive review of the application characteristics of biodiesel blends in diesel engines. Appl Sci. 2020;10(22):8015–8095.
  • FutureBridge. Renewable diesel: an alternative fuel. 16:43. [cited 2022 February 23, 2022]. Available from: https://www.futurebridge.com/industry/perspectives-energy/renewable-diesel-the-fuel-of-the-future/.
  • Elgharbawy AS, Sadik WA, Sadek OM, et al. A review on biodiesel feed-stocks and production technologies. J Chil Chem Soc. 2021;66(1):5098–5109.
  • Chozhavendhan S, Vijay Pradhap Singh M, Fransila B, et al. A review on influencing parameters of biodiesel production and purification. Curr Res Green Sustain Chem. 2020;1–2(2):1–6.
  • Gravalos I, Ziakas N, Loutridis S, et al. A mechatronic system for automated topping and suckering of tobacco plants. Comput Electron Agric. 2019;166:104986.
  • Acharya N, Nanda P, Panda S, et al. Analysis of properties and estimation of optimum blending ratio of blended mahua biodiesel. Eng Sci Technol. 2017;20(2):511–517.
  • Yan B, Zhang S, Chen W, et al. Pyrolysis of tobacco wastes for bio-oil with aroma compounds. J Anal Appl Pyrolysis. 2018;136:248–254.
  • Devarajan Y, Munuswamy DB, Nagappan B. Emissions analysis on diesel engine fueled with cashew nut shell biodiesel and pentanol blends. Environ Sci Pollut Res Int. 2017;24(14):13136–13141.
  • Demirbas A, Bafail A, Ahmad W, et al. Biodiesel production from non-edible plant oils. Energy Explor Exploit. 2016;34(2):290–318.
  • Gadhave SL, Ragit SS. Process optimization of Tung oil methyl ester (Verniciafordii) using the Taguchi approach, and its fuel characterization. Biofuels. 2020;11(1):49–55.
  • Yadav AK, Pal A, Ghosh U, et al. Comparative study of biodiesel production methods from yellow oleander oil and its performance analysis on an agricultural diesel engine. Int J Ambient Energy. 2019;40(2):152–157.
  • Pham LN, Van Luu B, Phuoc HD, et al. Production of biodiesel from candlenut oil using a two-step Co-solvent method and evaluation of its gaseous emissions. J Oleo Sci. 2018;67(5):617–626.
  • Durairaj RB, Anderson A, Mageshwaran G, et al. Performance and emission characteristics of cotton seed and neem oil biodiesel with CeO2 additives in a single-cylinder diesel engine. Int J Ambient Energy. 2019;40(4):396–400.
  • Onukwuli DO, Emembolu LN, Ude CN, et al. Optimization of biodiesel production from refined cotton seed oil and its characterization. Egypt J Pet. 2017;26(1):103–110.
  • Thangaraj B, Solomon PR. Scope of biodiesel from oils of woody plants: a review. Clean Energy. 2020;4(2):89–106.
  • Baena LM, Calderón JA. Effects of palm biodiesel and blends of biodiesel with organic acids on metals. Heliyon. 2020;6(5):e03735–3760.
  • Ngoie IW. Biodiesel production from edible oil wastewater sludge with bioethanol using heterogeneous nano-magnetic catalysis. Electronic Theses and Dissertation, Cape Peninsula University of Technology; 2019. http://etd.cput.ac.za/bitstream/20.500.11838/2933/1/Ngoie__Ilunga_Wighens__211280224.pdf.
  • Rosson E, Sgarbossa P, Pedrielli F. Bioliquids from raw waste animal fats: an alternative renewable energy source. Biomass Convers Biorefin. 2020;1–16.
  • Madai IJ, Jande YAC, Kivevele T. Fast rate production of biodiesel from neem seed oil using a catalyst made from banana peel ash loaded with metal oxide (Li-Cao/Fe2(SO4)3). Adv Mater Sci Eng. 2020;2020:1–11.
  • Changmai B, Vanlalveni B, Ingle AP, et al. Widely used catalysts in biodiesel production: a review. RSC Adv. 2020;10(68):41625–41679.
  • Mizik T, Gyarmati G. Economic and sustainability of biodiesel production—a systematic literature review. Clean Technol. 2021;3(1):19–36.
  • Achinas S, Horjus J, Achinas V, et al. A pestle analysis of biofuels energy industry in Europe. Sustainability. 2019;11(21):5981–5981.
  • Culaba AB, Ubando AT, Ching PML, et al. Biofuel from microalgae: sustainable pathways. Sustainability. 2020;12(19):8009–8109.
  • Erchamo YS, Mamo TT, Workneh GA, et al. Improved biodiesel production from waste cooking oil with mixed methanol–ethanol using enhanced eggshell-derived CaO nano-catalyst. Sci Rep. 2021;11(1):6708–6722.
  • Yusoff MNAM, Zulkifli NWM, Sukiman NL, et al. Sustainability of palm biodiesel in transportation: a review on biofuel standard, policy and international collaboration between Malaysia and Colombia. Bioenergy Res. 2021;14(1):43–60.
  • Sousa AM, Andrade TA, Errico M, et al. Fatty acid content in biomasses: State of the art and novel physical property estimation methods. Int J Chem Eng. 2019;2019:1–25.
  • FSSAI. FSSAI issues directions regarding disposal and collection of used cooking oil, foodsafetyhelpline. 08:15; 2019. [cited 2021 11 June]. February 12. http://dx.doi.org/10.4067/S0717-97072021000105098.
  • Awogbemi O, Onuh EI, Inambao FL. Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. Int J Low-Carbon Technol. 2019;14(3):417–425. September
  • Mannu A, Ferro M, Pietro D, et al. Innovative applications of waste cooking oil as raw material. Sci Prog. 2019;40:153–160.
  • Rizwanul Fattah IM, Ong HC, Mahlia TMI, et al. 2020. State of the art of catalysts for biodiesel production, Front Energy Res, 8, 101–117. https://doi.org/10.3389/fenrg.2020.00101.
  • Widayat Fernanda AAA, Silvie ES. Palm kernel shell bio-char catalyst for biodiesel production from waste cooking oil. IOP Conf Ser: Mater Sci Eng. 2021;1053–1070.
  • Pruszko R. Chapter 23 - Biodiesel production. In Dahiya A, editor. Bioenergy. 2nd ed. Academic press; Elsevier; 2020. p. 491–514. https://doi.org/10.1016/B978-0-12-815497-7.00023-3
  • Abdul Raman AA, Tan HW, Buthiyappan A. Two-step purification of glycerol as a value added by product from the biodiesel production process. Front Chem. 2019;7:774–790.
  • Pitt FD, Domingos AM, Chivanga Barros AA, et al. Purification of residual glycerol recovered from biodiesel production. S Afr J Chem Eng. 2019;29:42–51.
  • Castillo Gónzalez JP, Álvarez Gutiérrez PE, Medina MA, et al. Effects on biodiesel production caused by feed oil changes in a continuous stirred-tank reactor. Appl Sci. 2020;10(3):992–1112.
  • Toson P, Doshi P, Jajcevic D. Explicit residence time distribution of a generalised Cascade of continuous stirred tank reactors for a description of short recirculation time (bypassing). Processes. 2019;7(9):615–633.
  • Bianchi P, Williams J, Kapp CO. Oscillatory flow reactors for synthetic chemistry applications. J Flow Chem. 2020;10(3):475–490.
  • Kamzolova SV, Morgunov IG. Physiological, biochemical and energetic characteristics of torulasporaglobosa, a potential producer of biofuel. Energies. 2021;14(11):3198–3221.
  • Ibrahim MH, Dasin DY, Yahuza I. The physicochemical analysis of biodiesel produced from african sweet orange (citrus sinensis) seeds oil. Int J Eng Technol Manag Res. 2020;6:82–91.
  • Moritiwon OJ, Afolabi EA, Garba MU, et al. Experimental investigation of fast pyrolysis of isoberlinadoka-derived sawdust for bio-oil production. Arab J Sci Eng. 2021;46(7):6303–6313.
  • Gandidi IM, Wiyono A, Berman EG, et al. Experimental upgrading of liquid crude oil obtained from calophylluminophyllum by two-stage pyrolysis. Case Stud Therm Eng. 2019;16:100544–101049.
  • Channapattana SV, Kulkarni KK. Bio-diesel as a fuel in I.C. engines – a review. Int J Comput Sci Appl. 2009;2(1):22–26.
  • Omidghane M, Bartoli M, Asomaning J, et al. Pyrolysis of fatty acids derived from hydrolysis of brown grease with biosolids. Environ Sci Pollut Res Int. 2020;27(21):26395–26405.
  • Attia M, Farag S, Chaouki J. Upgrading of oils from biomass and waste: catalytic hydro-deoxygenation. Catalysts. 2020;10(12):1381–1400.
  • Zahan KA, Kano M. Biodiesel production from palm oil, its by-products, and mill effluent: a review. Energies. 2018;11(8):2132–2160.
  • Makareviciene V, Sendzikiene E. Noncatalytic biodiesel synthesis under supercritical conditions. Processes. 2021;9(1):138–166.
  • Hassan AA, Smith JD. Laboratory-scale research of non-catalyzed supercritical alcohol process for continuous biodiesel production. Catalysts. 2021;11(4):435–460.
  • Jha A. Microwave assisted synthesis of organic compounds and nanomaterials. In Kumar B, editor, Nanofibers. Interchopen; 2021. p. 456–789. https://doi.org/10.5772/intechopen.98224
  • Díaz-Ortiz A, Prieto P, de la Hoz A. A critical overview on the effect of microwave irradiation in organic synthesis. Chem Rec. 2019;19(1):85–97.
  • Mohamad Aziz NA, Yunus R, Kania D, et al. Prospects and challenges of microwave-combined technology for biodiesel and bio-lubricant production through a transesterification: a review. Molecules. 2021;26(4):788–800.
  • Saani SM, Abdolalizadeh J, Heris SZ. Ultrasonic/sonochemical synthesis and evaluation of nanostructured oil in water emulsions for topical delivery of protein drugs. Ultrason Sonochem. 2019;55:86–95.
  • Sadatshojaie A, Wood DA, Jokar SM, et al. Applying ultrasonic fields to separate water contained in medium-gravity crude oil emulsions and determining crude oil adhesion coefficient. Ultrason Sonochem. 2021;70:105303–101073.
  • Ramírez-Sanabria AE, López LL, Orozco MI. Optimization of the transesterification process of palm oil using ultrasound-based technique. Cienc Desarro. 2020;11(2):145–151. [Mismatch
  • Barney CW, Dougan CE, McLeod KR, et al. Cavitation in soft matter. Proc Natl Acad Sci USA. 2020;117(17):9157–9165.
  • Bucciol F, Colia M, Calci- Gaudino E, et al. Enabling technologies and sustainable catalysis in biodiesel preparation. Catalysts. 2020;10(9):988–1007.
  • Shinde K, Kaliaguine S. A comparative study of ultrasound biodiesel production using different homogeneous catalysts. ChemEngineering. 2019;3(1):18.
  • Strapasson A, Falcão J, Rossberg T, et al. Land use change and the European biofuels policy: the expansion of oilseed feedstock on lands with high carbon stock. Oil Seeds Fat Crops Lipids. 2019;26(39):39–12.
  • Hsiao M-C, Liao P-H, Lan NV, et al. Enhancement of biodiesel production from high-acid-value waste cooking oil via a microwave reactor using a homogeneous alkaline catalyst. Energies. 2021;14(2):437–450.
  • Coniwanti P, Surliadji L, Triandini D. The effects of catalysts type, molar ratio, and transesterification time in producing biodiesel from beef tallow. IOP Conf Ser: Mater Sci Eng. 2019;620(1):012019–012633.
  • Okwundu OS, El-Shazly AH, Elkady M. Comparative effect of reaction time on biodiesel production from low free fatty acid beef tallow: a definition of product yield. SN Appl Sci. 2019;1(2):345–361.
  • Vitidsant R, Kodama S, Sekiguchi H. Transesterification using ultrasonic spray of triolein containing CaO particles into methanol vapor in a 3-phase reactor. Processes. 2021;9(1):181–195.
  • Catalysis. Chemistry libreText, 15:48; 2021, March 20 [cited 2022 February 27]. Available from: https://chem.libretexts.org/@go/page/25181.
  • Adewuyi A. Challenges and prospects of renewable energy in Nigeria: a case of bioethanol and biodiesel production. Energy Rep. 2020;6(4):77–88.
  • Shinde P, S, Suryawanshi P, S, Patil, et al. A brief overview of recent progress in porous silica as catalyst supports. J Compos Sci. 2021;5(3):75–17.
  • Refaat A, Attia NK, Sibak HA, et al. Production optimisation and quality assessment of biodiesel from waste vegetable oil. Int J Environ Sci Technol. 2010;5(1):183–213.
  • Hossain MN, Bhuyan M, Alam A, et al. Optimization of biodiesel production from waste cooking oil using S-TiO2/SBA-15 heterogeneous acid catalyst. Catalysts. 2019;9(1):67–15.
  • Gupta AR, Rathod VK. Waste cooking oil and waste chicken eggshells derived solid base catalyst for the biodiesel production, optimization and kinetics. Waste Manag. 2018;79:169–178.
  • Yadav M, Sharma YC. Transesterification of used vegetable oil using BaAl2O4 spinel as heterogeneous base catalyst. Energy Convers Manage. 2019;198:111795.
  • Dos Santos TC, Santos ECS, Dias JP, et al. Reduced graphene oxide as an excellent platform to produce a stable bronsted acid catalyst for biodiesel production. Fuel. 2019;256:115793.
  • Lee JH, Jeon H, Park JT, et al. Synthesis of hierarchical flower-shaped hollow MgO microspheres via ethylene-glycol mediated process as a base heterogeneous catalyst for transesterification for biodiesel production. Biomass Bioenergy. 2020;142:105788.
  • Basumatary B, Basumatary S, Das B, et al. Waste Musa paradisiaca plant: an efficient heterogeneous base catalyst for fast production of biodiesel. J Cleaner Prod. 2021;305:127089.
  • Qu S, Chen C, Guo M, et al. Synthesis of MgO/ZSM-5 catalyst and optimization of process parameters for clean production of biodiesel from Spirulina platensis. J Cleaner Prod. 2020;276:123382.
  • Maneechot P, Sriprapakhan P, Manadee S, et al. Improvement of potassium species dispersed on hierarchical zeolite NaY by using combined methods between ultrasound and microwave-assisted impregnation as catalysts for transesterification of refined Jatropha seed oil. Biomass Bioenergy. 2021;153:106202.
  • Wang J, Li K, He Y, et al. Enhanced performance of lipase immobilized onto CO2+-chelated magnetic nanoparticles and its application in biodiesel production. Fuel. 2019;255:115794.
  • Binhayeeding N, Klomklao S, Prasertsan P, et al. Improvement of biodiesel production using waste cooking oil and applying single and mixed immobilized lipases on polyhydroxyalkanoate. Renewable Energy. 2020;162:1819–1827.
  • Mićić R, Tomić M, Martinović F, et al. Reduction of free fatty acids in waste oil for biodiesel production by glycerolysis: investigation and optimization of process parameters. Green Process Synth,. 2019;8(1):15–23.
  • Faruque MO, Razzak SA, Hossain MM. Application of heterogeneous catalysts for biodiesel production from microalgal oil—a review. Catalysts. 2020;10(9):1025.
  • Dantas J, Leal E, Cornejo DR, et al. Biodiesel production evaluating the use and reuse of magnetic nanocatalysts NiO.5ZnO.5Fe2O4. Arab J Chem. 2020;13(1):3026–3042.
  • Vasić K, Hojnik Podrepšek G, Knez Ž, et al. Biodiesel production using solid acid catalysts based on metal oxides. Catalysts. 2020;10(2):237–263.
  • De Jesus de Oliveira C, Teleken JG, Alves HJ. Catalytic efficiency of the eggshell calcined and enriched with glycerin in the synthesis of biodiesel from frying residual oil. Environ Sci Pollut Res Int. 2020;27(15):17878–17890.
  • Kondrat SA, van Bokhoven JA. A perspective on counting catalytic active sites and rates of reaction using x-ray spectroscopy. Top Catal. 2019;62(17-20):1218–1227.
  • Sumari S, Fajaroh F, Suryadharma IB, et al. Zeolite impregnated with ag as catalysts for glycerol conversion to ethanol assisted by ultrasonic. IOP Conf Ser: Mater Sci Eng. 2019;515:012075.
  • Fattahi N, Konstantinos T, Rafael L, et al. Zeolite-based catalysts: a valuable approach toward ester bond formation. Catalysts. 2019;9(9):758.
  • Karbul A, Yengejeh RJ, Mohammadi MK, et al. Synthesis and characterization of trimetallic Fe-Co-V/zeolite and Fe-Co-Mo/zeolite composite nanostructures. Mater Res. 2021;24(3):7.
  • Liu L, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev. 2018;118(10):4981–5079.
  • Alaya-Ibrahim S, Kovo AS, Abdulkareem AS, et al. Development of nano-silver doped zeolite a synthesized from Nigerian ahoko kaolin for treatment of wastewater of a typical textile company. Chem Eng Commun. 2020;207(8):1114–1137.
  • Hashimoto S, Uwada T, Masuhara H, et al. Fabrication of gold nanoparticle-doped zeolite L crystals and characterization by optical microscopy: laser ablation- and crystallization inclusion-based approach. J Phys Chem C. 2008;112(39):15089–15093.
  • Zhu S, Xu L, Yang S, et al. Cobalt-doped ZnO nanoparticles derived from zeolite imidazole frameworks: Synthesis, characterization, and application for the detection of an exhaled diabetes biomarker. J Colloid Interface Sci. 2020;569:358–365.
  • Gawande MB, Goswami A, Felpin F, et al. Cu and Cu-Based nanoparticles: Synthesis and applications in catalysis. Chem Rev. 2016;116(6):3722–3811.
  • Southard J. Weathering, geolibretexts. 16:31; 2021, March 8 [2021 Retrieved June 25]. Available from https://geo.libretexts.org/@go/page/13466.
  • Oyebanjo O, Ekosse G-I, Odiyo J. Physico-chemical, mineralogical, and chemical characterisation of cretaceous–paleogene/neogenekaolins within Eastern Dahomey and Niger Delta basins from Nigeria: possible industrial applications. Minerals. 2020;10(8):670–681.
  • Dansarai MM, Bawa MA, Tokan A. Nigerian clay deposits for use as refractory materials in metallurgical industries – a review. Int J Eng Res Technol. 2020;9(6):1–12. https://www.ijert.org/nigerian-clay-deposits-for-use-as-refractory-materials-in-metallurgical-industries-a-review
  • Kloprogge JT, Ponce CP. Spectroscopic studies of synthetic and natural saponites: a review. Minerals. 2021;11(2):112–129.
  • Romero M, Padilla I, Contreras M, et al. Mullite-based ceramics from mining waste: a review. Minerals. 2021;11(3):332–350.
  • Horri N, Sanz-Pérez ES, Arencibia A, et al. Effect of acid activation on the CO2 adsorption capacity of montmorillonite. Adsorption. 2020;26(5):793–811.
  • Zahid I, Ayoub M, Abdullah BB, et al. Activation of nano kaolin clay for Bio-Glycerol conversion to a valuable fuel additive. Sustainability. 2021;13(5):2631.
  • Del Campo P, Martínez C, Corma A. Activation and conversion of alkanes in the confined space of zeolite-type materials. Chem Soc Rev. 2021;50(15):8511–8595.
  • Novembre D, Gimeno D, Del Vecchio A. Synthesis and characterization of Na-P1 (GIS) zeolite using a kaolinitic rock. Sci Report. 2021;11:4872–5001.
  • Almeida A, Ribeiro R, Mota JPB, et al. Extrusion and characterization of high Si/Al ratio ZSM-5 using silica binder. Energies. 2020;13(5):1201–1230.
  • Al-Ani A, Haslam JJC, Mordvinova NE, et al. Synthesis of nanostructured catalysts by surfactant-templating of large-pore zeolites. Nanoscale Adv. 2019;1(5):2029–2039.
  • Hartmann M, Thommes M, Schwieger W. Hierarchically-ordered zeolites: a critical assessment. Adv Mater Interfaces. 2021;8(4):2001841–2001869.
  • Duan H, Tian Y, Gong S, et al. Effects of crystallite sizes of Pt/HZSM-5 zeolite catalysts on the hydrodeoxygenation of guaiacol. Nanomaterials. 2020;10(11):2246–2269.
  • Jia X, Khan W, Wu Z, et al. Modern synthesis strategies for hierarchical zeolites: bottom-up versus top-down strategies. Adv Powder Technol. 2019;30(3):467–484.
  • Pal N, Lee J-H, Cho E-B. Recent trends in morphology-controlled synthesis and application of mesoporous silica nanoparticles. Nanomaterials. 2020;10(11):2122–2137.
  • Adrover AE, Pedernera M, Bonne M, et al. Synthesis and characterization of mesoporous SBA-15 and SBA-16 as carriers to improve albendazole dissolution rate. Saudi Pharm J. 2020;28(1):15–24.
  • Xu H, Zhu J, Zhu L, et al. Advances in the synthesis of ferrierite zeolite. Molecules. 2020;25(16):3722–3744.
  • Smail HA, Rehan M, Shareef KM, et al. Synthesis of uniform mesoporous zeolite ZSM-5 catalyst for Friedel-Crafts acylation. Chem Eng. 2019;3(2):35–53.
  • Bandura I, Panek R, Madej J, et al. Synthesis of zeolite-carbon composites using high-carbon fly ash and their adsorption abilities towards petroleum substances. Fuel. 2021;283:119173–119195.
  • Abdulridha S, Jiao Y, Xu S, et al. Mesoporous zeolitic materials (mzms) derived from zeolite y using a microwave method for catalysis. Front Chem. 2020;8:482.
  • Hrachovcová K, Tišler Z, Svobodová E, et al. Modified alkali activated zeolite foams with improved textural and mechanical properties. Minerals. 2020;10(5):483–501.
  • Valencia S. Zeolitic microporous materials and their applications. Molecules. 2021;26(3):730–755.
  • Wang I, Shao Y, Li G, et al. Synthesis of high-micropore-volume pure-silica zeolites from a polymer near-neutral medium free of fluoride ions for VOCs capture. Microporous Mesoporous Mater. 2019;286:149–154.
  • Pan T, Wu Z, Yip, A, CK. Advances in the green synthesis of microporous and hierarchical zeolites: a short review. Catalysts. 2019;9(3):274–299.
  • Khaleque A, Alam MM, Hoque M, et al. Zeolite synthesis from low-cost materials and environmental applications: a review. Environ Adv. 2020;2:100019–101019.
  • Xiong G, Meng F, Liu J, et al. Rapid hydrothermal synthesis of hierarchical ZSM-5/beta composite zeolites. RSC Adv. 2021;11(35):21235–21247.
  • Khan W, Jia X, Wu Z, et al. Incorporating hierarchy into conventional zeolites for catalytic biomass conversions: a review. Catalysts. 2019;9(2):127–150.
  • Li J, Wang L, Zhang D, et al. One-step synthesis of hierarchical ZSM-5 zeolites and their catalytic performance on the conversion of methanol to aromatics. Reac Kinet Mech Cat. 2020;130(1):519–530.
  • Gackowski M, Datka J. Acid properties of hierarchical zeolites Y. Molecules. 2020;25(5):1044–1076.
  • Zhang K, Fernandez S, Lawrence JA, et al. Organotemplate-free β zeolites: from zeolite synthesis to hierarchical structure creation. ACS Omega. 2018;3(12):18935–18942.
  • Silva DSA, Castelblanco WN, Piva DH, et al. Tuning the brønsted and lewis acid nature in HZSM-5 zeolites by the generation of intracrystalline mesoporosity—catalytic behavior for the acylation of anisole. Molecular Catalysis. 2020;492:111026–111136.
  • Wang S, Tian R, He B, et al. The success of dual-functional templating for synthesizing hierarchical analcime zeolite. Appl Organometal Chem. 2019;33(11):e4711–4739.
  • Feng J, Yan Z, Song J, et al. Study on the structure-activity relationship between the molecular structure of sulfategemini surfactant and surface activity, thermodynamic properties and foam properties. Chem Eng Sci. 2021;245:116857–111199.
  • Feng G, Wen Z, Wang J, et al. Guiding the design of practical MTW zeolite catalysts: an integrated experimental-theoretical perspective. Microporous Mesoporous Mater. 2021;312:110810–111118.
  • Kalvachev Y, Todorova T, Popov C. Recent progress in synthesis and application of nanosized and hierarchical mordenite—a short review. Catalysts. 2021;11(3):308–330.
  • Kim HS, Kang SK, Zhang H, et al. Al-ZSM-5 nanocrystal catalysts grown from silicalite-1 seeds for methane conversion. Energies. 2021;14(2):485–502.
  • Zhang G, Fan Y, Huang J, et al. Decoupling nucleation from crystal-growth for the synthesis of nanocrystalline zeolites. Dalton Trans. 2020;49(21):7258–7266.
  • Fang Y, Yang F, He X, et al. Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization. Front Chem Sci Eng. 2019;13(3):543–553.
  • Shamzhy M, Opanasenko M, Concepción P, et al. New trends in tailoring active sites in zeolite-based catalysts. Chem Soc Rev. 2019;48(4):1095–1149.
  • Miyake K, Inoue R, Miura T, et al. Improving hydrothermal stability of acid sites in MFI type aluminosilicate zeolite (ZSM-5) by coating MFI type all silica zeolite (silicalite-1) shell layer. Microporous Mesoporous Mater. 2019;288:109523–109557.
  • Auepattana-aumrung C, Márquez V, Wannakao S, et al. Role of Al in Na-ZSM-5 zeolite structure on catalyst stability in butene cracking reaction. Sci Rep. 2020;10(1):643–671.
  • Li J, Wu Q, Wu J. Synthesis of nanoparticles via solvothermal and hydrothermal methods. In Aliofkhazraei M, editor. Handbook of nanoparticles. Cham: Springer; 2015. p. 1–28 https://doi.org/10.1007/978-3-319-13188-7_17-1
  • Tran NBT, Duong NB, Le NL. Synthesis and characterization of magnetic Fe3O4/zeolite NaA nanocomposite for the adsorption removal of methylene blue potential in wastewater treatment. J Chem. 2021;2021:1–14.
  • Ratnasari DK, Bijl A, Yang W, et al. Effect of H-ZSM-5 and Al-MCM-41 proportions in catalyst mixtures on the composition of Bio-Oil in Ex-Situ catalytic pyrolysis of lignocellulose biomass. Catalysts. 2020;10(8):868.
  • Fawaz EG, Salam DAS, Rigolet S, et al. Hierarchical zeolites as catalysts for biodiesel production from waste frying oils to overcome mass transfer limitations. Molecules. 2021;26(16):4879.
  • Qian S, Feng B, Zhai Y, et al. Catalytic pyrolysis of biodiesel surrogate over HZSM-5 zeolite catalyst. Chin J Chem Phys. 2021;34(1):102–111.
  • Fereidooni L, Abbaspourrad A, Enayati M. Electrolytic transesterification of waste frying oil using Na+/zeolite–chitosan biocomposite for biodiesel production. Waste Manage (Oxford). 2021;127:48–62.
  • AbuKhadra MR, Basyouny MG, El-Sherbeeny AM, et al. Transesterification of commercial waste cooking oil into biodiesel over innovative alkali trapped zeolite nanocomposite as green and environmental catalysts. Sustain Chem Pharm. 2020;17:100289.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.