180
Views
0
CrossRef citations to date
0
Altmetric
Articles

Analysis of the performance and products in the torrefaction of sugarcane bagasse with different particle sizes

ORCID Icon, , , , , & show all
Pages 565-581 | Received 11 Jul 2022, Accepted 06 Nov 2022, Published online: 05 Dec 2022

References

  • Chen WH, Zhuang YQ, Liu SH, et al. Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres. Bioresour Technol. 2016;199:367–374.
  • Sellappah V, Uemura Y, Hassan S, et al. Torrefaction of empty fruit bunch in the presence of combustion gas. Procedia Eng. 2016;148:750–757.
  • Bach QV, Trinh TN, Tran KQ, et al. Pyrolysis characteristics and kinetics of biomass torrefied in various atmospheres. Energy Convers Manage. 2017;141:72–78.
  • Rodriguez Alonso E, Dupont C, Heux L, et al. Study of solid chemical evolution in torrefaction of different biomasses through solid-state 13C cross-polarization/magic angle spinning NMR (nuclear magnetic resonance) and TGA (thermogravimetric analysis). Energy. 2016;97:381–390.
  • Uemura Y, Saadon S, Osman N, et al. Torrefaction of oil palm kernel shell in the presence of oxygen and carbon dioxide. Fuel. 2015;144:171–179.
  • Li M-F, Li X, Bian J, et al. Influence of temperature on bamboo torrefaction under carbon dioxide atmosphere. Ind Crops Prod. 2015;76:149–157.
  • Soponpongpipat N, Sae-Ueng U. The effect of biomass bulk arrangements on the decomposition pathways in the torrefaction process. Renew Energy. 2015;81:679–684.
  • Basu P, Rao S, Dhungana A. An investigation into the effect of biomass particle size on its torrefaction. Can J Chem Eng. 2013;91(3):466–474.
  • Granados DA, Chejne F, Basu P. A two dimensional model for torrefaction of large biomass particles. J Anal Appl Pyrolysis. 2016;120:1–14.
  • Jones JM, Bridgeman TG, Darvell LI, et al. Combustion properties of torrefied willow compared with bituminous coals. Fuel Process Technol. 2012;101:1–9.
  • Pierre F, Almeida G, Brito J, et al. Influence of torrefaction on some chemical and energy properties of Maritime pine and pedunculate oak. Bioresources. 2011;6(2):1204–1218.
  • Bridgeman TG, Darvell LI, Jones JM, et al. Influence of particle size on the analytical and chemical properties of two energy crops. Fuel. 2007;86(1–2):60–72.
  • Wang C, Peng J, Li H, et al. Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets. Bioresour Technol. 2013;127:318–325.
  • Medic D, Darr M, Shah a, et al. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel. 2012;91(1):147–154.
  • Granados DA, Velásquez HI, Chejne F. Energetic and exergetic evaluation of residual biomass in a torrefaction process. Energy. 2014;74(C):181–189.
  • Granados DA, Basu P, Chejne F, et al. Detailed investigation into torrefaction of wood in a two-stage inclined rotary torrefier. Energy Fuels. 2017;31(1):647–658.
  • Broström M, Nordin A, Pommer L, et al. Influence of torrefaction on the devolatilization and oxidation kinetics of wood. J Anal Appl Pyrolysis. 2012;96:100–109.
  • Dhungana A, Dutta A, Basu P. Torrefaction of non -lignocellulose biomass waste. Can J Chem Eng. 2012;90(1):186–195.
  • Shang L, Ahrenfeldt J, Holm JK, et al. Changes of chemical and mechanical behavior of torrefied wheat straw. Biomass Bioenerg. 2012;40:63–70.
  • Chen W-H, Lu K-M, Tsai C-M. An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction. Appl Energy. 2012;100:318–325.
  • Shang L, Ahrenfeldt J, Holm JK, et al. Intrinsic kinetics and devolatilization of wheat straw during torrefaction. J Anal Appl Pyrolysis. 2013;100:145–152.
  • Basu P, Sadhukhan AK, Gupta P, et al. An experimental and theoretical investigation on torrefaction of a large wet wood particle. Bioresour Technol. 2014;159:215–222.
  • Carrier M, Hugo T, Gorgens J, et al. Comparison of slow and vacuum pyrolysis of sugar cane bagasse. J Anal Appl Pyrolysis. 2011;90(1):18–26. Jan
  • Peng Y, Wu S. The structural and thermal characteristics of wheat straw hemicellulose. J Anal Appl Pyrolysis. 2010;88(2):134–139. Jul
  • Zhang S, Dong Q, Zhang L, et al. Effects of water washing and torrefaction on the pyrolysis behavior and kinetics of rice husk through TGA and Py-GC/MS. Bioresour Technol. 2016;199:352–361.
  • Chen YC, Chen WH, Lin BJ, et al. Impact of torrefaction on the composition, structure and reactivity of a microalga residue. Appl Energy. 2016;181:110–119.
  • Wilk M, Magdziarz A, Kalemba I. Characterisation of renewable fuels’ torrefaction process with different instrumental techniques. Energy. 2015;87:259–269.
  • Pushkin SA, Kozlova LV, Makarov AA, et al. Cell wall components in torrefied softwood and hardwood samples. J Anal Appl Pyrolysis. 2015;116:102–113.
  • Kihedu J. Torrefaction and combustion of Ligno-cellulosic biomass. Energy Procedia. 2015;75:162–167.
  • Ren S, Lei H, Wang L, et al. Thermal behaviour and kinetic study for woody biomass torrefaction and torrefied biomass pyrolysis by TGA. Biosyst Eng. 2013;116(4):420–426.
  • Burhenne L, Messmer J, Aicher T, et al. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. J Anal Appl Pyrolysis. 2013;101:177–184.
  • Nhuchhen DR, Basu P. Experimental investigation of mildly pressurized torrefaction in air and nitrogen. Energy Fuels. 2014;28(5):3110–3121.
  • Nhuchhen DR, Basu P, Acharya B. Investigation into overall heat transfer coefficient in indirectly heated rotary torrefier. Int J Heat Mass Transf. 2016;102:64–76.
  • Nhuchhen DR, Basu P, Acharya B. Torrefaction of poplar in continuous two-stage indirectly heated rotary torrefier. Energy Fuels. 2016;30(2):1027–1038.
  • Strandberg M, Olofsson I, Pommer L, et al. Effects of temperature and residence time on continuous torrefaction of spruce wood. Fuel Process Technol. 2015;134:387–398.
  • Mei Y, Liu R, Yang Q, et al. Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas. Bioresour Technol. 2015;177:355–360.
  • Piton M, Huchet F, Le Corre O, et al. A coupled thermal-granular model in flights rotary kiln: industrial validation and process design. Appl Therm Eng. 2015;75(JANUARY 2015):1011–1021.
  • Colin B, Dirion J-L, Arlabosse P, et al. Wood chips flow in a rotary kiln: experiments and modeling. Chem Eng Res Des. 2015;98:179–187.
  • Sanginés P, Domínguez MP, Sánchez F, et al. Slow pyrolysis of olive stones in a rotary kiln: chemical and energy characterization of solid, gas, and condensable products. J Renew Sustain Ener. 2015;7(4):043103.
  • Huang Y-F, Sung H-T, Chiueh P-T, et al. Microwave torrefaction of sewage sludge and leucaena. J Taiwan Inst Chem Eng. 2017;70:236–243.
  • Huang Y-F, Cheng P-H, Chiueh P-T, et al. Leucaena biochar produced by microwave torrefaction: fuel properties and energy efficiency. Appl Energy. 2017;204:1018–1025.
  • Bach QV, Chen WH, Lin SC, et al. Wet torrefaction of microalga chlorella vulgaris ESP-31 with microwave-assisted heating. Energy Convers Manage. 2017;141:163–170.
  • Huang YF, Sung HT, Chiueh PT, et al. Co-torrefaction of sewage sludge and leucaena by using microwave heating. Energy. 2016;116:1–7.
  • Ren S, Lei H, Wang L, et al. The integrated process of microwave torrefaction and pyrolysis of corn stover for biofuel production. J Anal Appl Pyrolysis. 2014;108:248–253.
  • Satpathy SK, Tabil LG, Meda V, et al. Torrefaction of wheat and barley straw after microwave heating. Fuel. 2014;124:269–278.
  • Santaniello R, Galgano A, Blasi CD. Coupling transport phenomena and tar cracking in the modeling of microwave-induced pyrolysis of wood. Fuel. 2012;96:355–373.
  • Lasek JA, Kopczyński M, Janusz M, et al. Combustion properties of torrefied biomass obtained from flue gas-enhanced reactor. Energy. 2017;119(x):362–368.
  • Valix M, Katyal S, Cheung WH. Combustion of thermochemically torrefied sugar cane bagasse. Bioresour Technol. 2017;223:202–209.
  • Arteaga-Pérez LE, Grandón H, Flores M, et al. Steam torrefaction of eucalyptus globulus for producing black pellets: a pilot-scale experience. Bioresour Technol. 2017;238:194–204.
  • Bai X, Wang G, Gong C, et al. Co-pelletizing characteristics of torrefied wheat straw with peanut shell. Bioresour Technol. 2017;233:373–381.
  • Rudolfsson M, Borén E, Pommer L, et al. Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass. Appl Energy. 2017;191:414–424.
  • Chen D, Cen K, Jing X, et al. An approach for upgrading biomass and pyrolysis product quality using a combination of aqueous phase bio-oil washing and torrefaction pretreatment. Bioresour Technol. 2017;233:150–158.
  • Manatura K, Lu JH, Wu KT, et al. Exergy analysis on torrefied rice husk pellet in fluidized bed gasification. Appl Therm Eng. 2017;111:1016–1024.
  • Chen H, Chen X, Qin Y, et al. Effect of torrefaction on the properties of rice straw high temperature pyrolysis char: pore structure, aromaticity and gasification activity. Bioresour Technol. 2017;228:241–249.
  • Gogoi D, Bordoloi N, Goswami R, et al. Effect of torrefaction on yield and quality of pyrolytic products of arecanut husk: an agro-processing wastes. Bioresour Technol. 2017;242:36–44.
  • Ku X, Jin H, Lin J. Comparison of gasification performances between raw and torrefied biomasses in an air-blown fluidized-bed gasifier. Chem Eng Sci. 2017;168:235–249.
  • Woytiuk K, Campbell W, Gerspacher R, et al. The effect of torrefaction on syngas quality metrics from fluidized bed gasification of SRC willow. Renewable Energy. 2017;101:409–416.
  • Kopczyński M, Lasek JA, Iluk A, et al. The co-combustion of hard coal with raw and torrefied biomasses (willow (Salix viminalis), olive oil residue and waste wood from furniture manufacturing). Energy. 2017;140:1316–1325.
  • Colin B, Dirion J-L, Arlabosse P, et al. Quantification of the torrefaction effects on the grindability and the hygroscopicity of wood chips. Fuel. 2017;197:232–239.
  • Granados DA, Basu P, Chejne F. Biomass torrefaction in a two-stage rotary reactor: modeling and experimental validation. Energy Fuels. 2017;31(5):5701–5709.
  • Nachenius RW, van de Wardt TA, Ronsse F, et al. Torrefaction of pine in a bench-scale screw conveyor reactor. Biomass Bioenerg. 2015;79:96–104.
  • Nachenius RW, Van De Wardt TA, Ronsse F, et al. Residence time distributions of coarse biomass particles in a screw conveyor reactor. Fuel Process Technol. 2015;130:87–95.
  • Zheng A, Zhao Z, Chang S, et al. Effect of torrefaction on structure and fast pyrolysis behavior of corncobs. Bioresour Technol. 2013;128:370–377.
  • Hilten RN, Speir R. A, Kastner JR, et al. Effect of torrefaction on bio-oil upgrading over HZSM-5. Part 2: byproduct formation and catalyst properties and function. Energy Fuels. 2013;27(2):844–856.
  • Chang S, Zhao Z, Zheng A, et al. Characterization of products from torrefaction of sprucewood and bagasse in an auger reactor. Energy Fuels. 2012;26(11):7009–7017.
  • Prins MJ, Ptasinski KJ, Janssen FJJG. Torrefaction of wood. Part 1. Weight loss kinetics. J Anal Appl Pyrolysis. 2006;77(1):28–34.
  • Bridgeman TG, Jones JM, Shield I, et al. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel. 2008;87(6):844–856.
  • Li H, Liu X, Legros R, et al. Torrefaction of sawdust in a fluidized bed reactor. Bioresour Technol. 2012;103(1):453–458.
  • Nhuchhen DR, Basu P, Acharya B. A comprehensive review on biomass torrefaction. IJREB. 2014;2014:1–56.
  • James G. Sugarcane (2nd Ed.). Iowa, USA: blackwell Publishing; 2004.
  • Di Blasi C, Lanzetta M. Intrinsic kinetics of isothermal xylan degradation in inert atmosphere. J Anal Appl Pyrolysis. 1997;40–41:287–303.
  • Di Blasi C, Branca C. Kinetics of primary product formation from wood pyrolysis. Ind. Eng Chem Res. 2001;40(23):5547–5556.
  • Rogers FE, Ohlemiller TJ. Cellulosic insulation material I. Overall degradation kinetics and reaction heats. Combust Sci Technol. 1980;24(3–4):129–137.
  • Thurner F, Mann U. Kinetic investigation of wood pyrolysis. Ind Eng Chem Proc Des Dev. 1981;20(3):482–488.
  • Ward SM, Braslaw J. Experimental weight loss kinetics of wood pyrolysis under vacuum. Combust Flame. 1985;61(3):261–269.
  • Shafizadeh F, Chin PPS. Thermal deterioration of wood. ACS Symposium series. 1977; pp. 57–81.
  • Chen W-H, Kuo P-C. Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy. 2011;36(11):6451–6460.
  • Varhegyi G, Antal MJ, Szekely T, et al. Kinetics of the thermal decomposition of cellulose, hemicellulose and sugarcane bagasse. Energy Fuels. 1989;3(3):329–335.
  • Peng J, Bi XT, Lim J, et al. Development of torrefaction kinetics for British Columbia softwoods. Int J Chem Reactor Eng. 2012;10(1)Jan
  • Chen W-H, Kuo P-C. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy. 2011;36(2):803–811.
  • Montoya Arbeláez JI, Chejne Janna F, Garcia-Pérez M. Fast pyrolysis of biomass: a review of relevant aspects. Part I: parametric study. DYNA. 2015;82(192):239–248.
  • Montoya J, Pecha B, Roman D, et al. Effect of temperature and heating rate on product distribution from the pyrolysis of sugarcane bagasse in a hot plate reactor. J Anal Appl Pyrolysis. 2017;123:347–363.
  • Westerhof RJM, Nygård HS, Van Swaaij WPM, et al. Effect of particle geometry and microstructure on fast pyrolysis of beech wood. Energy Fuels. 2012;26(4):2274–2280.
  • Paulsen AD, Mettler MS, Dauenhauer PJ. The role of sample dimension and temperature in cellulose pyrolysis. Energy Fuels. 2013;27(4):2126–2134.
  • Nocquet T, Dupont C, Commandre JM, et al. Volatile species release during torrefaction of biomass and its macromolecular constituents: part 2 – modeling study. Energy. 2014;72:188–194.
  • Klinger J, Bar-Ziv E, Shonnard D. Unified kinetic model for torrefaction-pyrolysis. Fuel Process Technol. 2015;138:175–183.
  • Wang G, Luo Y, Deng J, et al. Pretreatment of biomass by torrefaction. Chin. Sci. Bull. 2011;56(14):1442–1448.
  • Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12–13):1781–1788.
  • Basu P. Biomass gasification, pyrolysis and torrefaction. Elsevier, 2013.
  • Patwardhan PR, Dalluge DL, Shanks BH, et al. Distinguishing primary and secondary reactions of cellulose pyrolysis. Bioresour Technol. 2011;102(8):5265–5269. Apr
  • Patwardhan PR, Brown RC, Shanks BH. Product distribution from the fast pyrolysis of hemicellulose. ChemSusChem. 2011;4(5):636–643.
  • Shen DK, Gu S, Bridgwater AV. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG–FTIR and Py–GC–FTIR. J Anal Appl Pyrolysis. 2010;87(2):199–206.
  • Patwardhan PR, Satrio JA, Brown RC, et al. Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour Technol. 2010;101(12):4646–4655.
  • Stankovikj F, McDonald AG, Helms GL, et al. Quantification of Bio-Oil functional groups and evidences of the presence of pyrolytic humins. Energy Fuels. 2016;30(8):6505–6524.
  • Li M-F, Chen C-Z, Li X, et al. Torrefaction of bamboo under nitrogen atmosphere: influence of temperature and time on the structure and properties of the solid product. Fuel. 2015;161:193–196.
  • Il Na B, Ahn BJ, Lee JW. Changes in chemical and physical properties of yellow poplar (liriodendron tulipifera) during torrefaction. Wood Sci Technol. 2015;49(2):257–272.
  • Toscano G, Pizzi A, Foppa Pedretti E, et al. Torrefaction of tomato industry residues. Fuel. 2015;143:89–97.
  • Pereira SC, Maehara L, Machado CMM, et al. Physical-chemical-morphological characterization of the whole sugarcane lignocellulosic biomass used for 2G ethanol production by spectroscopy and microscopy techniques. Renew Energy. 2016;87:607–617.
  • Pohlmann JG, Osório E, Vilela ACF, et al. Integrating physicochemical information to follow the transformations of biomass upon torrefaction and low-temperature carbonization. Fuel. 2014;131:17–27.
  • Ibrahim RHH, Darvell LI, Jones JM, et al. Physicochemical characterisation of torrefied biomass. J Anal Appl Pyrolysis. 2013;103:21–30.
  • Xu F, Yu J, Tesso T, et al. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques : a mini-review. Appl Energy. 2013;104:801–809.
  • Wong Sak Hoi L, Martincigh BS. Sugar cane plant fibres: separation and characterisation. Ind Crops Prod. 2013;47:1–12.
  • Xue Y, Zhou S, Brown RC, et al. Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor. Fuel. 2015;156:40–46.
  • Sharma RK, Wooten JB, Baliga VL, et al. Characterization of chars from pyrolysis of lignin. Fuel. 2004;83(11–12):1469–1482.
  • Yan W, Perez S, Sheng K. Upgrading fuel quality of moso bamboo via low temperature thermochemical treatments: dry torrefaction and hydrothermal carbonization. Fuel. 2017;196:473–480.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.