215
Views
0
CrossRef citations to date
0
Altmetric
Articles

High yield production of lipid and carotenoids in a newly isolated Rhodotorula mucilaginosa by adapting process optimization approach

, , &
Pages 509-520 | Received 12 Aug 2022, Accepted 21 Nov 2022, Published online: 07 Dec 2022

References

  • Khot M, Gupta R, Barve K, et al. Fungal production of single cell oil using untreated copra cake and evaluation of its fuel properties for biodiesel. J Microbiol Biotechnol. 2015;25(4):459–463.
  • EIA. Total Energy Annual Data – U.S. Energy Information Administration (EIA) [Internet]. Available from: https://www.eia.gov/totalenergy/data/annual/index.php.
  • Mishra VK, Goswami R. A review of production, properties and advantages of biodiesel. Biofuels. 2018;9(2):273–289.
  • Karatay SE, Dönmez G. Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses. Bioresour Technol. 2010;101(20):7988–7990.
  • Popp J, Harangi-Rákos M, Gabnai Z, et al. Biofuels and their co-products as livestock feed: global economic and environmental implications. Molecules. 2016;21(3):285.
  • Global Bio-Succinic Acid Market Size Worth USD 992.8 Million By 2020. 2012. Available from: https://www.grandviewresearch.com/press-release/bio-succinic-acid-market.
  • Khot M, Kamat S, Zinjarde S, et al. Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel. Microb Cell Fact. 2012;11.
  • Prabhu AA, Gadela R, Bharali B, et al. Development of high biomass and lipid yielding medium for newly isolated Rhodotorula mucilaginosa. Fuel. 2019;239:874–885.
  • Dorado MP, Cruz F, Palomar JM, et al. An approach to the economics of two vegetable oil-based biofuels in Spain. Renew Energy. 2006;31(8):1231–1237.
  • Zhang Y, Dubé MA, McLean DD, et al. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol. 2003;90(3):229–240.
  • Muthuraj M, Chandra N, Palabhanvi B, et al. Process engineering for high-cell-density cultivation of lipid rich microalgal biomass of chlorella sp. FC2 IITG. Bioenerg Res. 2015;8(2):726–739.
  • Mandal B, Prabhu A, Pakshirajan K, et al. Construction and parameters modulation of a novel variant Rhodococcus opacus BM985 to achieve enhanced triacylglycerol-a biodiesel precursor, using synthetic dairy wastewater. Process Biochem. 2019;84:9–21.
  • Chattopadhyay A, Mitra M, Maiti MK. Recent advances in lipid metabolic engineering of oleaginous yeasts. Biotechnol Adv. 2021;53:107722.
  • Bracharz F, Redai V, Bach K, et al. The effects of TORC signal interference on lipogenesis in the oleaginous yeast Trichosporon oleaginosus. BMC Biotechnol. 2017;17(1):1–13.
  • McNeil BA, Stuart DT. Optimization of C16 and C18 fatty alcohol production by an engineered strain of Lipomyces starkeyi. J Ind Microbiol Biotechnol. 2018;45(1):1–14.
  • Wiebe MG, Koivuranta K, Penttilä M, et al. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnol. 2012;12:26.
  • Yang J, Xu M, Zhang X, et al. Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol. 2011;102(1):159–165.
  • Kot AM, Błażejak S, Kurcz A, et al. Rhodotorula glutinis—potential source of lipids, carotenoids, and enzymes for use in industries. Appl Microbiol Biotechnol. 2016;100(14):6103–6117.
  • Khot M, Raut G, Ghosh D, et al. Lipid recovery from oleaginous yeasts: perspectives and challenges for industrial applications. Fuel. 2020;259:116292.
  • Xue F, Miao J, Zhang X, et al. Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresour Technol. 2008;99(13):5923–5927.
  • Maza DD, Viñarta SC, Su Y, et al. Growth and lipid production of Rhodotorula glutinis R4, in comparison to other oleaginous yeasts. J Biotechnol. 2020;310:21–31.
  • Bansal N, Dasgupta D, Hazra S, et al. Effect of utilization of crude glycerol as substrate on fatty acid composition of an oleaginous yeast Rhodotorula mucilagenosa IIPL32: assessment of nutritional indices. Bioresour Technol. 2020;309:123330.
  • Banerjee A, Sharma T, Nautiyal AK, et al. Scale-up strategy for yeast single cell oil production for Rhodotorula mucilagenosa IIPL32 from corn cob derived pentosan. Bioresour Technol. 2020;309:123329.
  • Tang W, Wang Y, Zhang J, et al. Biosynthetic pathway of carotenoids in rhodotorula and strategies for enhanced their production. J Microbiol Biotechnol. 2019;29(4):507–517.
  • Prabhu AA, Mandal B, Dasu VV. Medium optimization for high yield production of extracellular human interferon-γ from Pichia pastoris: a statistical optimization and neural network-based approach. Korean J Chem Eng. 2017;34(4):1109–1121.
  • Park YK, Nicaud JM, Ledesma-Amaro R. The engineering potential of Rhodosporidium toruloides as a workhorse for biotechnological applications. Trends Biotechnol. 2018;36(3):304–317.
  • Shen H, Li Q, Yu X. Lipid production by Rhodotorula glutinis in continuous cultivation with a gravity sedimentation system. Indian J Microbiol. 2020;60(2):246–250.
  • Zhao X, Peng F, Du W, et al. Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid. Bioprocess Biosyst Eng. 2012;35(6):993–1004.
  • Saenge C, Cheirsilp B, Suksaroge TT, et al. Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem. 2011;46(1):210–218.
  • Gong Z, Shen H, Zhou W, et al. Efficient conversion of acetate into lipids by the oleaginous yeast Cryptococcus curvatus. Biotechnol Biofuels. 2015;8(1):1–9.
  • Palmieri L, Lasorsa FM, De Palma A, et al. Identification of the yeast ACR1 gene product as a succinate-fumarate transporter essential for growth on ethanol or acetate. FEBS Lett. 1997;417(1):114–118.
  • Lian J, Garcia-Perez M, Coates R, et al. Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production. Bioresour Technol. 2012;118:177–186.
  • Silva HR, Prete CEC, Zambrano F, et al. Combining glucose and sodium acetate improves the growth of Neochloris oleoabundans under mixotrophic conditions. AMB Express. 2016;6(1):10.
  • Palabhanvi B, Muthuraj M, Mukherjee M, et al. Process engineering strategy for high cell density-lipid rich cultivation of chlorella sp. FC2 IITG via model guided feeding recipe and substrate driven pH control. Algal Res. 2016;16:317–329.
  • Zhang W, Wu J, Zhou Y-J, et al. Enhanced lipid production by Rhodotorula glutinis CGMCC 2.703 using a two-stage pH regulation strategy with acetate as the substrate. Energy Sci Eng. 2019;7(5):2077–2085.
  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–917.
  • Pacia MZ, Pukalski J, Turnau K, et al. Lipids, hemoproteins and carotenoids in alive Rhodotorula mucilaginosa cells under pesticide decomposition – Raman imaging study. Chemosphere. 2016;164:1–6.
  • Kumar V, Muthuraj M, Palabhanvi B, et al. Evaluation and optimization of two stage sequential in situ transesterification process for fatty acid methyl ester quantification from microalgae. Renew Energy. 2014;68:560–569.
  • Aksu Z, Eren AT. Production of carotenoids by the isolated yeast of Rhodotorula glutinis. Biochem Eng J. 2007;35(2):107–113.
  • de Carvalho LMJ, Gomes PB, Godoy Rl de O, et al. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata duch): a preliminary study. Food Res Int. 2012;47(2):337–340.
  • Bhosale P, Gadre RV. β-carotene production in sugarcane molasses by a Rhodotorula glutinis mutant. J Ind Microbiol Biotechnol. 2001;26(6):327–332.
  • Prabhu AA, Thomas DJ, Ledesma-Amaro R, et al. Biovalorisation of crude glycerol and xylose into xylitol by oleaginous yeast Yarrowia lipolytica. Microb Cell Fact. 2020;19(1):121.
  • Deshavath NN, Mohan M, Veeranki VD, et al. Dilute acid pretreatment of sorghum biomass to maximize the hemicellulose hydrolysis with minimized levels of fermentative inhibitors for bioethanol production. 3 Biotech. 2017;7(2):139.
  • Elfeky N, Elmahmoudy M, Zhang Y, et al. Lipid and carotenoid production by Rhodotorula glutinis with a combined cultivation mode of nitrogen, sulfur, and aluminium stress. Appl. Sci. 2019;9(12):2444.
  • Prabhu AA, Chityala S, Jayachandran D, et al. A two step optimization approach for maximizing biosorption of hexavalent chromium ions (Cr (VI)) using alginate immobilized Sargassum sp in a packed bed column. Sep. Sci. Technol. 2021;56(1):90–106.
  • Dai CC, Tao J, Xie F, et al. Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity. African J Biotechnol. 2007;6(18):2130–2134.
  • Marova I, Carnecka M, Halienova A, et al. Production of carotenoid-/Ergosterol-Supplemented biomass by red yeast Rhodotorula glutinis grown under external stress. Food Technol Biotechnol. 2010;48(1):56–61.
  • Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part II: technology and potential applications. Eur J Lipid Sci Technol. 2011;113(8):1052–1073.
  • Shen H, Gong Z, Yang X, et al. Kinetics of continuous cultivation of the oleaginous yeast Rhodosporidium toruloides. J Biotechnol. 2013;168(1):85–89.
  • Béligon V, Poughon L, Christophe G, et al. Validation of a predictive model for fed-batch and continuous lipids production processes from acetic acid using the oleaginous yeast Cryptococcus curvatus. Biochem Eng J. 2016;111:117–128.
  • Lopes HJS, Bonturi N, Kerkhoven EJ, et al. N ratio and carbon source-dependent lipid production profiling in rhodotorula toruloides. Appl Microbiol Biotechnol. 2020;104(6):2639–2649.
  • Li Y, Zhao Z, Kent Bai F, et al. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzym Microb Technol. 2007;41(3):312–317.
  • Braunwald T, Schwemmlein L, Graeff-Hönninger S, et al. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl Microbiol Biotechnol. 2013;97(14):6581–6588.
  • Tinoi J, Rakariyatham N, Deming RL. Simplex optimization of carotenoid production by Rhodotorula glutinis using hydrolyzed Mung bean waste flour as substrate. Process Biochem. 2005;40(7):2551–2557.
  • Stemmler K, Massimi R, Kirkwood AE. Growth and fatty acid characterization of microalgae isolated from municipal waste-treatment systems and the potential role of algal-associated bacteria in feedstock production. PeerJ. 2016;4:e1780.
  • Liu Y, Wang Y, Liu H, et al. Enhanced lipid production with undetoxified corncob hydrolysate by Rhodotorula glutinis using a high cell density culture strategy. Bioresour Technol. 2015;180:32–39.
  • Cui Y, Blackburn JW, Liang Y. Fermentation optimization for the production of lipid by Cryptococcus curvatus: use of response surface methodology. Biomass Bioener. 2012;47:410–417.
  • Jayachandran D, Chityala S, Prabhu AA, et al. Cationic reverse micellar based purification of recombinant glutaminase free L-asparaginase II of Bacillus subtilis WB800N from fermentation media. Protein Expr Purif. 2019;157:1–8.
  • Narisetty V, Prabhu AA, Al-Jaradah K, et al. Microbial itaconic acid production from starchy food waste by newly isolated thermotolerant Aspergillus terreus strain. Bioresour Technol. 2021;337:125426.
  • Toyota H, Asai T, Oku N. Process optimization by use of design of experiments: application for liposomalization of FK506. Eur J Pharm Sci. 2017;102:196–202.
  • Jollife IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans R Soc A Math Phys Eng Sci. 2016;374(2065):345–352.
  • Singh G, Jawed A, Paul D, et al. Concomitant production of lipids and carotenoids in Rhodosporidium toruloides under osmotic stress using response surface methodology. Front Microbiol. 2016;7(OCT):1686.
  • Dias C, Sousa S, Caldeira J, et al. New dual-stage pH control fed-batch cultivation strategy for the improvement of lipids and carotenoids production by the red yeast Rhodosporidium toruloides NCYC 921. Bioresour Technol. 2015;189:309–318.
  • Zhang Z, Zhang X, Tan T. Bioresource technology lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation. Bioresour Technol. 2014;157:149–153.
  • Czamara K, Majzner K, Pacia MZ, et al. Raman spectroscopy of lipids: a review. J Raman Spectrosc. 2015;46(1):4–20.
  • Viñarta SC, Angelicola MV, Van Nieuwenhove C, et al. Fatty acids profiles and estimation of the biodiesel quality parameters from Rhodotorula spp. from Antarctica. Biotechnol Lett. 2020;42(5):757–772.
  • Khot M, Ghosh D. Lipids of Rhodotorula mucilaginosa IIPL32 with biodiesel potential: oil yield, fatty acid profile, fuel properties. J Basic Microbiol. 2017;57(4):345–352.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.