788
Views
3
CrossRef citations to date
0
Altmetric
Review

Advances in sustainable biofuel production from fast pyrolysis of lignocellulosic biomass

ORCID Icon, ORCID Icon & ORCID Icon
Pages 529-550 | Received 04 Aug 2022, Accepted 21 Nov 2022, Published online: 29 Nov 2022

References

  • Agarwal A, Rana M, Park J-H. Advancement in technologies for the depolymerization of lignin. Fuel Process Technol. 2018;181:115–132.
  • Sharma S, Kundu A, Basu S, et al. Sustainable environmental management and related biofuel technologies. J Environ Manage. 2020;273:111096.
  • Li M, Luo N, Lu Y. Biomass energy technological paradigm (BETP): trends in this sector. Sustainability. 2017;9(4):567.
  • Malode SJ, Prabhu KK, Mascarenhas RJ, et al. Recent advances and viability in biofuel production. Energy Conversion and Management: x. 2021;10:100070.
  • Brennan L, Owende P. Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable Sustainable Energy Rev. 2010;14(2):557–577.
  • Nigam PS, Singh A. Production of liquid biofuels from renewable resources. Prog Energy Combust Sci. 2011;37(1):52–68.
  • Akia M, Yazdani F, Motaee E, et al. A review on conversion of biomass to biofuel by nanocatalysts. Biofuel Res J. 2014;01(01):16–25.
  • Mukherjee I, Sovacool BK. Palm oil-based biofuels and sustainability in southeast Asia: a review of Indonesia, Malaysia, and Thailand. Renewable Sustainable Energy Rev. 2014;37:1–12.
  • Awalludin MF, Sulaiman O, Hashim R, et al. An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction. Renewable Sustainable Energy Rev. 2015;50:1469–1484.
  • Fang AGE-Z. 2013. Conversion of oil palm empty fruit bunch to biofuels, Chapter 16. London: IntechOpen.
  • Kurnia JC, Jangam SV, Akhtar S, et al. Advances in biofuel production from oil palm and palm oil processing wastes: a review. Biofuel Res J. 2016;3(1):332–346.
  • Chiaramonti D, Prussi M, Buffi M, et al. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production. Appl Energy. 2017;185:963–972.
  • Allegue LB, Hinge J. 2014. Biogas upgrading evaluation of methods for H2S removal. Taastrup, Denmark: Danish Technological Institute. p. 31.
  • Juangsa FB, Prananto LA, Mufrodi Z, et al. Highly energy-efficient combination of dehydrogenation of methylcyclohexane and hydrogen-based power generation. Appl Energy. 2018;226:31–38.
  • De S, Saha B, Luque R. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels. Bioresour Technol. 2015;178:108–118.
  • Lucia U, Grisolia G. Cyanobacteria and microalgae: thermoeconomic considerations in biofuel production. Energies. 2018;11(1):156.
  • Ni M, Xu Y, Wang C, et al. A novel thermo-controlled acetaminophen electrochemical sensor based on carboxylated multi-walled carbon nanotubes and thermosensitive polymer. Diamond Relat Mater. 2020;107:107877.
  • Wang S, Cai Q, Wang X, et al. Biogasoline production from the Co-cracking of the distilled fraction of bio-oil and ethanol. Energy Fuels. 2014;28(1):115–122.
  • Wang S, Guo X, Wang K, et al. Influence of the interaction of components on the pyrolysis behavior of biomass. J Anal Appl Pyrolysis. 2011;91(1):183–189.
  • Hosoya T, Kawamoto H, Saka S. Pyrolysis behaviors of wood and its constituent polymers at gasification temperature. J Anal Appl Pyrolysis. 2007;78(2):328–336.
  • Collard F-X, Blin J, Bensakhria A, et al. Influence of impregnated metal on the pyrolysis conversion of biomass constituents. J Anal Appl Pyrolysis. 2012;95:213–226.
  • White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis. 2011;91(1):1–33.
  • Hossain MK, Strezov V, Chan KY, et al. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manage. 2011;92(1):223–228.
  • Mulligan CJ, Strezov L, Strezov V. Thermal decomposition of wheat straw and mallee residue under pyrolysis conditions. Energy Fuels. 2010;24(1):46–52.
  • Fisher T, Hajaligol M, Waymack B, et al. Pyrolysis behavior and kinetics of biomass derived materials. J Anal Appl Pyrolysis. 2002;62(2):331–349.
  • Stefanidis SD, Kalogiannis KG, Iliopoulou EF, et al. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis. 2014;105:143–150.
  • Lange J-P. Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuels, Bioprod Bioref. 2007;1(1):39–48.
  • Van de Velden M, Baeyens J, Brems A, et al. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy. 2010;35(1):232–242.
  • Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 2012;38:68–94.
  • Isahak WNRW, Hisham MWM, Yarmo MA, et al. A review on bio-oil production from biomass by using pyrolysis method. Renewable Sustainable Energy Rev. 2012;16(8):5910–5923.
  • Jahirul MI, Rasul MG, Chowdhury AA, et al. Biofuels production through biomass pyrolysis—a technological review. Energies. 2012;5(12):4952–5001.
  • Pourkarimi S, Hallajisani A, Alizadehdakhel A, et al. Biofuel production through micro- and macroalgae pyrolysis – a review of pyrolysis methods and process parameters. J Anal Appl Pyrolysis. 2019;142:104599.
  • Kan T, Strezov V, Evans TJ. Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renewable Sustainable Energy Rev. 2016;57:1126–1140.
  • Rezaei PS, Shafaghat H, Daud, WM. Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: a review. Appl Catal, A. 2014;469:490–511.
  • Weldekidan H, Strezov V, Town G. Review of solar energy for biofuel extraction. Renewable Sustainable Energy Rev. 2018a;88:184–192.
  • Demirbas A. Determination of calorific values of bio-chars and pyro-oils from pyrolysis of beech trunkbarks. J Anal Appl Pyrolysis. 2004;72(2):215–219.
  • Parvez AM, Wu T, Afzal MT, et al. Conventional and microwave-assisted pyrolysis of gumwood: a comparison study using thermodynamic evaluation and hydrogen production. Fuel Process Technol. 2019;184:1–11.
  • Czernik S, Bridgwater AV. Overview of applications of biomass fast pyrolysis oil. Energy Fuels. 2004;18(2):590–598.
  • Dimitriadis A, Liakos D, Pfisterer U, et al. Impact of hydrogenation on miscibility of fast pyrolysis bio-oil with refinery fractions towards bio-oil refinery integration. Biomass Bioenergy. 2021;151:106171.
  • Qu L, Jiang X, Zhang Z, et al. A review of hydrodeoxygenation of bio-oil: model compounds, catalysts, and equipment. Green Chem. 2021;23(23):9348–9376.
  • Wang Y, Akbarzadeh A, Chong L, et al. Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: a review. Chemosphere. 2022;297:134181.
  • Qiu B, Yang C, Shao Q, et al. Recent advances on industrial solid waste catalysts for improving the quality of bio-oil from biomass catalytic cracking: a review. Fuel. 2022;315:123218.
  • Xiong Z, Fang Z, Jiang L, et al. Comparative study of catalytic and non-catalytic steam reforming of bio-oil: importance of pyrolysis temperature and its parent biomass particle size during bio-oil production process. Fuel. 2022;314:122746.
  • Chen J, Lu L, Wang S. Mild hydrogenation of simulated bio-oil based on molecular distillation. J Fuel Chem Technol. 2017;45(9):1056–1063.
  • Omar S, Yang Y, Wang J. A review on catalytic & non-catalytic bio-oil upgrading in supercritical fluids. Front Chem Sci Eng. 2021;15(1):4–17.
  • Prasertpong P, Jaroenkhasemmeesuk C, Regalbuto JR, et al. Optimization of process variables for esterification of bio-oil model compounds by a heteropolyacid catalyst. Energy Rep. 2020;6:1–9.
  • Leng L, Li H, Yuan X, et al. Bio-oil upgrading by emulsification/microemulsification: a review. Energy. 2018;161:214–232.
  • Balat M. An overview of the properties and applications of biomass pyrolysis oils. Energy Sour A. 2011;33(7):674–689.
  • Ahmad M, Rajapaksha AU, Lim JE, et al. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. 2014;99:19–33.
  • Mohan D, Sarswat A, Ok YS, et al. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review. Bioresour Technol. 2014;160:191–202.
  • Skodras G, Diamantopoulou I, Zabaniotou A, et al. Enhanced mercury adsorption in activated carbons from biomass materials and waste tires. Fuel Process Technol. 2007;88(8):749–758.
  • Manyà JJ. Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol. 2012;46(15):7939–7954.
  • Lee Y, Park J, Ryu C, et al. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresour Technol. 2013;148:196–201.
  • Qu T, Guo W, Shen L, et al. Experimental study of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin. Ind Eng Chem Res. 2011;50(18):10424–10433.
  • Strezov V, Evans TJ, Hayman C. Thermal conversion of elephant grass (pennisetum purpureum schum) to bio-gas, bio-oil and charcoal. Bioresour Technol. 2008;99(17):8394–8399.
  • Uddin MN, Daud WMAW, Abbas HF. Effects of pyrolysis parameters on hydrogen formations from biomass: a review. RSC Adv. 2014;4(21):10467–10490.
  • Guoxin H, Hao H, Yanhong L. Hydrogen-rich gas production from pyrolysis of biomass in an autogenerated steam atmosphere. Energy Fuels. 2009;23(3):1748–1753.
  • Valin S, Cances J, Castelli P, et al. Upgrading biomass pyrolysis gas by conversion of methane at high temperature: experiments and modelling. Fuel. 2009;88(5):834–842.
  • Qinglan H, Chang W, Dingqiang L, et al. Production of hydrogen-rich gas from plant biomass by catalytic pyrolysis at low temperature. Int J Hydrogen Energy. 2010;35(17):8884–8890.
  • Xu Y, Ye T, Qiu S, et al. High efficient conversion of CO2-rich bio-syngas to CO-rich bio-syngas using biomass char: a useful approach for production of bio-methanol from bio-oil. Bioresour Technol. 2011;102(10):6239–6245.
  • Hossain AK, Davies PA. Pyrolysis liquids and gases as alternative fuels in internal combustion engines – a review. Renewable Sustainable Energy Rev. 2013;21:165–189.
  • Kanaujia PK, Sharma YK, Garg MO, et al. Review of analytical strategies in the production and upgrading of bio-oils derived from lignocellulosic biomass. J Anal Appl Pyrolysis. 2014;105:55–74.
  • Hossain MK, Strezov V, Nelson PF. Thermal characterisation of the products of wastewater sludge pyrolysis. J Anal Appl Pyrolysis. 2009;85(1–2):442–446.
  • Li C, Suzuki K. Tar property, analysis, reforming mechanism and model for biomass gasification—an overview. Renewable Sustainable Energy Rev. 2009;13(3):594–604.
  • Kanaujia PK, Sharma YK, Agrawal UC, et al. Analytical approaches to characterizing pyrolysis oil from biomass. TrAC, Trends Anal Chem. 2013;42:125–136.
  • Rogovska N, Laird DA, Rathke SJ, et al. Biochar impact on midwestern mollisols and maize nutrient availability. Geoderma. 2014;230–231:340–347.
  • Liao C, Wu C, Yan Y. The characteristics of inorganic elements in ashes from a 1 MW CFB biomass gasification power generation plant. Fuel Process Technol. 2007;88(2):149–156.
  • Chia CH, Gong B, Joseph SD, et al. Imaging of mineral-enriched biochar by FTIR, Raman and SEM–EDX. Vib Spectrosc. 2012;62:248–257.
  • Xu X, Zhao B, Sun M, et al. Co-pyrolysis characteristics of municipal sewage sludge and hazelnut shell by TG-DTG-MS and residue analysis. Waste Manag. 2017;62:91–100.
  • Jiang L, Wang Y, Dai L, et al. Co-pyrolysis of biomass and soapstock in a downdraft reactor using a novel ZSM-5/SiC composite catalyst. Bioresour Technol. 2019;279:202–208.
  • Chintala V, Kumar S, Pandey JK, et al. Solar thermal pyrolysis of non-edible seeds to biofuels and their feasibility assessment. Energy Convers Manage. 2017;153:482–492.
  • Chattopadhyay J, Pathak TS, Srivastava R, et al. Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis. Energy. 2016;103:513–521.
  • Shaaban A, Se S-M, Dimin MF, et al. Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. J Anal Appl Pyrolysis. 2014;107:31–39.
  • Grierson S, Strezov V, Ellem G, et al. Thermal characterisation of microalgae under slow pyrolysis conditions. J Anal Appl Pyrolysis. 2009;85(1–2):118–123.
  • Uras Ü, Carrier M, Hardie AG, et al. Physico-chemical characterization of biochars from vacuum pyrolysis of South African agricultural wastes for application as soil amendments. J Anal Appl Pyrolysis. 2012;98:207–213.
  • Grierson S, Strezov V, Shah P. Properties of oil and char derived from slow pyrolysis of tetraselmis chui. Bioresour Technol. 2011;102(17):8232–8240.
  • Sınağ A, Uskan B, Gülbay S. Detailed characterization of the pyrolytic liquids obtained by pyrolysis of sawdust. J Anal Appl Pyrolysis. 2011;90(1):48–52.
  • Ismail TM, Banks SW, Yang Y, et al. Coal and biomass co-pyrolysis in a fluidized-bed reactor: numerical assessment of fuel type and blending conditions. Fuel. 2020;275:118004.
  • Bosong L, Enchen J, Xiwei X, et al. Reforming of biomass pyrolysis gas over bio-char and steam. Advan Biomed Eng. 2012;9:59.
  • Karayildirim T, Yanik J, Yuksel M, et al. Characterisation of products from pyrolysis of waste sludges. Fuel. 2006;85(10–11):1498–1508.
  • Myrén C, Hörnell C, Björnbom E, et al. Catalytic tar decomposition of biomass pyrolysis gas with a combination of dolomite and silica. Biomass Bioenergy. 2002;23(3):217–227.
  • Gustafsson E, Lin L, Strand M. Characterization of particulate matter in the hot product gas from atmospheric fluidized bed biomass gasifiers. Biomass Bioenergy. 2011;35: S71–S78.
  • Ye X, Lu Q, Wang X, et al. Catalytic fast pyrolysis of cellulose and biomass to selectively produce levoglucosenone using activated carbon catalyst. ACS Sustainable Chem Eng. 2017;5(11):10815–10825.
  • Mullen CA, Boateng AA. Production of aromatic hydrocarbons via catalytic pyrolysis of biomass over Fe-Modified HZSM-5 zeolites. ACS Sustainable Chem Eng. 2015;3(7):1623–1631.
  • Sanchez-Silva L, López-González D, Villaseñor J, et al. Thermogravimetric–mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour Technol. 2012;109:163–172.
  • Magdziarz A, Werle S. Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS. Waste Manag. 2014;34(1):174–179.
  • Gao N, Li A, Quan C, et al. TG–FTIR and Py–GC/MS analysis on pyrolysis and combustion of pine sawdust. J Anal Appl Pyrolysis. 2013;100:26–32.
  • Chen D, Liu D, Zhang H, et al. Bamboo pyrolysis using TG–FTIR and a lab-scale reactor: analysis of pyrolysis behavior, product properties, and carbon and energy yields. Fuel. 2015;148:79–86.
  • Wang Z, Xie L, Liu K, et al. Co-pyrolysis of sewage sludge and cotton stalks. Waste Manag. 2019;89:430–438.
  • Tian K, Liu W-J, Qian T-T, et al. Investigation on the evolution of N-Containing organic compounds during pyrolysis of sewage sludge. Environ Sci Technol. 2014;48(18):10888–10896.
  • Qian T-T, Li D-C, Jiang H. Thermochemical behavior of tris(2-Butoxyethyl) phosphate (TBEP) during Co-pyrolysis with biomass. Environ Sci Technol. 2014;48(18):10734–10742.
  • Nan H, Yang F, Zhao L, et al. Interaction of inherent minerals with carbon during biomass pyrolysis weakens biochar carbon sequestration potential. ACS Sustainable Chem Eng. 2019;7(1):1591–1599.
  • Lunsford KA, Peter GF, Yost RA. Direct matrix-assisted laser desorption/ionization mass spectrometric imaging of cellulose and hemicellulose in populus tissue. Anal Chem. 2011;83(17):6722–6730.
  • Hanley L, Zimmermann R. Light and molecular ions: the emergence of vacuum UV Single-Photon ionization in MS. Anal Chem. 2009;81(11):4174–4182.
  • Weng J, Jia L, Wang Y, et al. Pyrolysis study of poplar biomass by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. Proc Combust Inst. 2013;34(2):2347–2354.
  • Zhou Z, Liu C, Chen X, et al. On-line photoionization mass spectrometric study of lignin and lignite co-pyrolysis: insight into the synergetic effect. J Anal Appl Pyrolysis. 2019;137:285–292.
  • Jarvis MW, Daily JW, Carstensen H-H, et al. Direct detection of products from the pyrolysis of 2-phenethyl phenyl ether. J Phys Chem A. 2011;115(4):428–438.
  • Zickler GA, Wagermaier W, Funari SS, et al. In situ x-ray diffraction investigation of thermal decomposition of wood cellulose. J Anal Appl Pyrolysis. 2007;80(1):134–140.
  • Uchimiya M, Orlov A, Ramakrishnan G, et al. In situ and ex situ spectroscopic monitoring of biochar’s surface functional groups. J Anal Appl Pyrolysis. 2013;102:53–59.
  • Akhtar J, Saidina Amin N. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable Sustainable Energy Rev. 2012;16(7):5101–5109.
  • Fahmi R, Bridgwater AV, Donnison I, et al. The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel. 2008;87(7):1230–1240.
  • Wang Y, Wu L, Wang C, et al. Investigating the influence of extractives on the oil yield and alkane production obtained from three kinds of biomass via deoxy-liquefaction. Bioresour Technol. 2011;102(14):7190–7195.
  • Guo X, Wang S, Wang K, et al. Influence of extractives on mechanism of biomass pyrolysis. Journal of Fuel Chemistry and Technology. 2010;38(1):42–46.
  • Zheng Y, Zhao J, Xu F, et al. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci. 2014;42:35–53.
  • Shuping Z, Yulong W, Mingde Y, et al. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresour Technol. 2010;101(1):359–365.
  • Erlich C, Björnbom E, Bolado D, et al. Pyrolysis and gasification of pellets from sugar cane bagasse and wood. Fuel. 2006;85(10–11):1535–1540.
  • Xue AJ, Pan JH, Tian MC. Experimental study of impact of biomass pellet size on the pyrolysis products. Adv Mater Res. 2013;641:756–759.
  • Isaksson J, Åsblad A, Berntsson T. Influence of dryer type on the performance of a biomass gasification combined cycle co-located with an integrated pulp and paper mill. Biomass Bioenergy. 2013;59:336–347.
  • Uslu A, Faaij APC, Bergman PCA. Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy. 2008;33(8):1206–1223.
  • Kasparbauer RD. 2009. The effects of biomass pretreatments on the products of fast pyrolysis. Ames, IA: Iowa State University.
  • Boateng AA, Mullen CA. Fast pyrolysis of biomass thermally pretreated by torrefaction. J Anal Appl Pyrolysis. 2013;100:95–102.
  • Zheng A, Zhao Z, Chang S, et al. Effect of torrefaction on structure and fast pyrolysis behavior of corncobs. Bioresour Technol. 2013;128:370–377.
  • Ren S, Lei H, Wang L, et al. The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating. Bioresour Technol. 2013;135:659–664.
  • Chen H-Z, Liu Z-H. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnol J. 2015;10(6):866–885.
  • Biswas AK, Umeki K, Yang W, et al. Change of pyrolysis characteristics and structure of woody biomass due to steam explosion pretreatment. Fuel Process Technol. 2011;92(10):1849–1854.
  • Wang H, Srinivasan R, Yu F, et al. Effect of acid, alkali, and steam explosion pretreatments on characteristics of bio-oil produced from pinewood. Energy Fuels. 2011;25(8):3758–3764.
  • Carpenter D, Westover TL, Czernik S, et al. Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem. 2014;16(2):384–406.
  • Bundhoo ZMA, Mudhoo A, Mohee R. Promising unconventional pretreatments for lignocellulosic biomass. Crit Rev Environ Sci Technol. 2013;43(20):2140–2211.
  • Yachmenev V, Condon B, Klasson T, et al. Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J Biobased Mat Bioenergy. 2009;3(1):25–31. (https://www.ingentaconnect.com/content/asp/jbmb/2009/00000003/00000001/art00002
  • Sun RC, Tomkinson J. Characterization of hemicelluloses obtained by classical and ultrasonically assisted extractions from wheat straw. Carbohydr Polym. 2002;50(3):263–271.
  • Hoseinzadeh Hesas R, Wan Daud WM, Sahu A, et al. The effects of a microwave heating method on the production of activated carbon from agricultural waste: a review. J Anal Appl Pyrolysis. 2013;100:1–11.
  • Motasemi F, Afzal MT. A review on the microwave-assisted pyrolysis technique. Renewable Sustainable Energy Rev. 2013;28:317–330.
  • Wang X, Chen H, Luo K, et al. The influence of microwave drying on biomass pyrolysis. Energy Fuels. 2008;22(1):67–74.
  • Eom I-Y, Kim J-Y, Kim T-S, et al. Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass. Bioresour Technol. 2012;104:687–694.
  • Deng L, Zhang T, Che D. Effect of water washing on fuel properties, pyrolysis and combustion characteristics, and ash fusibility of biomass. Fuel Process Technol. 2013;106:712–720.
  • Carrier M, Neomagus HW, Görgens J, et al. Influence of chemical pretreatment on the internal structure and reactivity of pyrolysis chars produced from sugar cane bagasse. Energy Fuels. 2012;26(7):4497–4506.
  • Blasi CD, Branca C, D’Errico G. Degradation characteristics of straw and washed straw. Thermochim Acta. 2000;364(1–2):133–142.
  • Carrier M, Loppinet-Serani A, Denux D, et al. Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy. 2011;35(1):298–307.
  • Hallett JP, Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev. 2011;111(5):3508–3576.
  • Brandt A, Gräsvik J, Hallett JP, et al. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 2013;15(3):550–583.
  • Tan HT, Lee KT. Understanding the impact of ionic liquid pretreatment on biomass and enzymatic hydrolysis. Chem Eng J. 2012;183:448–458.
  • Varanasi P, Singh P, Auer M, et al. Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment. Biotechnol Biofuels. 2013;6(1):14.
  • Muranaka Y, Suzuki T, Sawanishi H, et al. Effective production of levulinic acid from biomass through pretreatment using phosphoric acid, hydrochloric acid, or ionic liquid. Ind Eng Chem Res. 2014;53(29):11611–11621.
  • Gao J, Chen L, Yuan K, et al. Ionic liquid pretreatment to enhance the anaerobic digestion of lignocellulosic biomass. Bioresour Technol. 2013;150:352–358.
  • Zhang J, Feng L, Wang D, et al. Thermogravimetric analysis of lignocellulosic biomass with ionic liquid pretreatment. Bioresour Technol. 2014;153:379–382.
  • Yu Y, Zeng Y, Zuo J, et al. Improving the conversion of biomass in catalytic fast pyrolysis via white-rot fungal pretreatment. Bioresour Technol. 2013;134:198–203.
  • Yang X, Zeng Y, Ma F, et al. Effect of biopretreatment on thermogravimetric and chemical characteristics of corn stover by different white-rot fungi. Bioresour Technol. 2010;101(14):5475–5479.
  • Lou R, Wu S. Products properties from fast pyrolysis of enzymatic/mild acidolysis lignin. Appl Energy. 2011;88(1):316–322.
  • Pütün E, Ateş F, Pütün AE. Catalytic pyrolysis of biomass in inert and steam atmospheres. Fuel. 2008;87(6):815–824.
  • Zhang H, Xiao R, Wang D, et al. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres. Bioresour Technol. 2011;102(5):4258–4264.
  • Guizani C, Escudero Sanz FJ, Salvador S. Effects of CO2 on biomass fast pyrolysis: reaction rate, gas yields and char reactive properties. Fuel. 2014;116:310–320.
  • Li J, Yan R, Xiao B, et al. Influence of temperature on the formation of oil from pyrolyzing palm oil wastes in a fixed bed reactor. Energy Fuels. 2007;21(4):2398–2407.
  • Ateş F, Işıkdağ MA. Evaluation of the role of the pyrolysis temperature in straw biomass samples and characterization of the oils by GC/MS. Energy Fuels. 2008;22(3):1936–1943.
  • Burhenne L, Damiani M, Aicher T. Effect of feedstock water content and pyrolysis temperature on the structure and reactivity of spruce wood char produced in fixed bed pyrolysis. Fuel. 2013;107:836–847.
  • Park S-W, Jang C-H. Effects of pyrolysis temperature on changes in fuel characteristics of biomass char. Energy. 2012;39(1):187–195.
  • Niu Y, Tan H, Liu Y, et al. The effect of particle size and heating rate on pyrolysis of waste capsicum stalks biomass. Energy Sources Part A. 2013;35(17):1663–1669.
  • Trinh TN, Jensen PA, Dam-Johansen K, et al. Influence of the pyrolysis temperature on sewage sludge product distribution, Bio-Oil, and char properties. Energy Fuels. 2013;27(3):1419–1427.
  • Salehi E, Abedi J, Harding T. Bio-oil from sawdust: pyrolysis of sawdust in a fixed-bed system. Energy Fuels. 2009;23(7):3767–3772.
  • Ozbay N, Pütün AE, Pütün E. Bio-oil production from rapid pyrolysis of cottonseed cake: product yields and compositions. Int J Energy Res. 2006;30(7):501–510.
  • Scott DS, Majerski P, Piskorz J, et al. A second look at fast pyrolysis of biomass—the RTI process. J Anal Appl Pyrolysis. 1999;51(1–2):23–37.
  • Alvarez J, Amutio M, Lopez G, et al. Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres. Waste Manag. 2019;85:385–395.
  • Hassan H, Hameed BH, Lim JK. Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene: synergistic effect and product distributions. Energy. 2020;191:116545.
  • Zhu J, Jin L, Luo Y, et al. Fast co-pyrolysis of a massive naomaohu coal and cedar mixture using rapid infrared heating. Energy Convers Manage. 2020;205:112442.
  • Li Y, Huang S, Wang Q, et al. Hydrogen transfer route and interaction mechanism during co-pyrolysis of Xilinhot lignite and rice husk. Fuel Process Technol. 2019;192:13–20.
  • Ferrara F, Orsini A, Plaisant A, et al. Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis. Bioresour Technol. 2014;171:433–441.
  • Montiano MG, Díaz-Faes E, Barriocanal C. Kinetics of co-pyrolysis of sawdust, coal and tar. Bioresour Technol. 2016;205:222–229.
  • Zhao Y, Cao H, Yao C, et al. Synergistic effects on cellulose and lignite co-pyrolysis and co-liquefaction. Bioresour Technol. 2020;299:122627.
  • Qiu S, Zhang S, Zhou X, et al. Thermal behavior and organic functional structure of poplar-fat coal blends during co-pyrolysis. Renewable Energy. 2019;136:308–316.
  • Chen X, Li S, Liu Z, et al. Pyrolysis characteristics of lignocellulosic biomass components in the presence of CaO. Bioresour Technol. 2019;287:121493.
  • Guo H, Fu Q, Zhang L, et al. Sulfur K-edge XAS study of sulfur transformation behavior during pyrolysis and co-pyrolysis of biomass and coals under different atmospheres. Fuel. 2018;234:1322–1327.
  • Garcia JM, Robertson ML. The future of plastics recycling. Science. 2017;358(6365):870–872.
  • Van Nguyen Q, Choi YS, Choi SK, et al. Improvement of bio-crude oil properties via co-pyrolysis of pine sawdust and waste polystyrene foam. J Environ Manage. 2019;237:24–29.
  • Yuan H, Fan H, Shan R, et al. Study of synergistic effects during co-pyrolysis of cellulose and high-density polyethylene at various ratios. Energy Convers Manage. 2018;157:517–526.
  • Czajczyńska D, Krzyżyńska R, Jouhara H, et al. Use of pyrolytic gas from waste tire as a fuel: a review. Energy. 2017;134:1121–1131.
  • Ahmed N, Zeeshan M, Iqbal N, et al. Investigation on bio-oil yield and quality with scrap tire addition in sugarcane bagasse pyrolysis. J Cleaner Prod. 2018;196:927–934.
  • Wang L, Chai M, Liu R, et al. Synergetic effects during co-pyrolysis of biomass and waste tire: a study on product distribution and reaction kinetics. Bioresour Technol. 2018;268:363–370.
  • Shah SAY, Zeeshan M, Farooq MZ, et al. Co-pyrolysis of cotton stalk and waste tire with a focus on liquid yield quantity and quality. Renewable Energy. 2019;130:238–244.
  • Hu G, Li J, Zhang X, et al. Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology. J Environ Manage. 2017;192:234–242.
  • Lin Y, Liao Y, Yu Z, et al. A study on co-pyrolysis of bagasse and sewage sludge using TG-FTIR and Py-GC/MS. Energy Convers Manage. 2017;151:190–198.
  • Huang H, Yang T, Lai F, et al. Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar. J Anal Appl Pyrolysis. 2017;125:61–68.
  • Wang X, Deng S, Tan H, et al. Synergetic effect of sewage sludge and biomass co-pyrolysis: a combined study in thermogravimetric analyzer and a fixed bed reactor. Energy Convers Manage. 2016;118:399–405.
  • Chen J, Zhang J, Liu J, et al. Co-pyrolytic mechanisms, kinetics, emissions and products of biomass and sewage sludge in N2, CO2 and mixed atmospheres. Chem Eng J. 2020;397:125372.
  • Yin Q, Liu M, Ren H. Biochar produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water. J Environ Manage. 2019;249:109410.
  • Wang J, Zhong Z, Ding K, et al. Catalytic fast co-pyrolysis of bamboo sawdust and waste tire using a tandem reactor with Cascade bubbling fluidized bed and fixed bed system. Energy Convers Manage. 2019;180:60–71.
  • Lin B, Huang Q, Chi Y. Co-pyrolysis of oily sludge and rice husk for improving pyrolysis oil quality. Fuel Process Technol. 2018;177:275–282.
  • Wan Mahari WA, Chong CT, Cheng CK, et al. Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste. Energy. 2018;162:309–317.
  • Li X, Zhang H, Li J, et al. Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene. Appl Catal, A. 2013;455:114–121.
  • Charoenwiangnuea P, Maihom T, Kongpracha P, et al. Adsorption and decarbonylation of furfural over H-ZSM-5 zeolite: a DFT study. RSC Adv. 2016;6(107):105888–105894.
  • Zhang X, Lei H, Chen S, et al. Catalytic co-pyrolysis of lignocellulosic biomass with polymers: a critical review. Green Chem. 2016;18(15):4145–4169.
  • Carlson TR, Cheng Y-T, Jae J, et al. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy Environ Sci. 2011;4(1):145–161.
  • Kalogiannis KG, Stefanidis SD, Karakoulia SA, et al. First pilot scale study of basic vs acidic catalysts in biomass pyrolysis: deoxygenation mechanisms and catalyst deactivation. Appl Catal, B. 2018;238:346–357.
  • Fan L, Zhang Y, Liu S, et al. Ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of low-density polyethylene with MgO. Energy Convers Manage. 2017;149:432–441.
  • Chen X, Liu L, Zhang L, et al. Pyrolysis characteristics and kinetics of coal–biomass blends during Co-Pyrolysis. Energy Fuels. 2019;33(2):1267–1278.
  • Aho A, Kumar N, Eränen K, et al. Catalytic pyrolysis of woody biomass. Biofuels. 2010;1(2):261–273.
  • Stefanidis SD, Karakoulia SA, Kalogiannis KG, et al. Natural magnesium oxide (MgO) catalysts: a cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil. Appl Catal, B. 2016;196:155–173.
  • Hu X, Gholizadeh M. Biomass pyrolysis: a review of the process development and challenges from initial researches up to the commercialisation stage. Journal of Energy Chemistry. 2019;39:109–143.
  • Garcia-Nunez JA, Pelaez-Samaniego MR, Garcia-Perez ME, et al. Historical developments of pyrolysis reactors: a review. Energy Fuels. 2017;31(6):5751–5775.
  • Yu Y, Yang Y, Cheng Z, et al. Pyrolysis of rice husk and corn stalk in auger reactor. 1. Characterization of char and gas at various temperatures. Energy Fuels. 2016;30(12):10568–10574.
  • Xiong Z, Syed-Hassan SSA, Xu J, et al. Evolution of coke structures during the pyrolysis of bio-oil at various temperatures and heating rates. J Anal Appl Pyrolysis. 2018;134:336–342.
  • Chintala V. Production, upgradation and utilization of solar assisted pyrolysis fuels from biomass – a technical review. Renewable Sustain Energy Rev. 2018;90:120–130.
  • Mutsengerere S, Chihobo CH, Musademba D, et al. A review of operating parameters affecting bio-oil yield in microwave pyrolysis of lignocellulosic biomass. Renewable Sustainable Energy Rev. 2019;104:328–336.
  • Bhattacharya M, Basak T. A review on the susceptor assisted microwave processing of materials. Energy. 2016;97:306–338.
  • Foong SY, Liew RK, Yang Y, et al. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions. Chemical Engineering Journal. 2020;389:124401.
  • Gautam R, Shyam S, Reddy BR, et al. Microwave-assisted pyrolysis and analytical fast pyrolysis of macroalgae: product analysis and effect of heating mechanism. Sustain Energy Fuels. 2019;3(11):3009–3020.
  • Bu Q, Morgan H. M, Liang J, et al. 2016. Chapter Two - Catalytic microwave pyrolysis of lignocellulosic biomass for fuels and chemicals (Y. Li & X. B. T.-A. in X. Ge (editors). Vol. 1. London: Elsevier. p. 69–123.
  • Gadkari S, Fidalgo B, Gu S. Numerical investigation of microwave-assisted pyrolysis of lignin. Fuel Process Technol. 2017;156:473–484.
  • Zhang Y, Cui Y, Liu S, et al. Fast microwave-assisted pyrolysis of wastes for biofuels production – a review. Bioresour Technol. 2020;297:122480.
  • Huang Y-F, Chiueh P-T, Kuan W-H, et al. Microwave pyrolysis of lignocellulosic biomass: heating performance and reaction kinetics. Energy. 2016;100:137–144.
  • Abas FZ, Ani FN, Zakaria ZA. Microwave-assisted production of optimized pyrolysis liquid oil from oil palm fiber. J Cleaner Prod. 2018;182:404–413.
  • Borges FC, Du Z, Xie Q, et al. Fast microwave assisted pyrolysis of biomass using microwave absorbent. Bioresour Technol. 2014;156:267–274.
  • Kostas ET, Durán-Jiménez G, Shepherd BJ, et al. Microwave pyrolysis of olive pomace for bio-oil and bio-char production. Chemical Engineering Journal. 2020;387:123404.
  • Wang Y, Dai L, Wang R, et al. Hydrocarbon fuel production from soapstock through fast microwave-assisted pyrolysis using microwave absorbent. J Anal Appl Pyrolysis. 2016;119:251–258.
  • Beneroso D, Monti T, Kostas ET, et al. Microwave pyrolysis of biomass for bio-oil production: scalable processing concepts. Chem Eng J. 2017;316:481–498.
  • Ge S, Yek PNY, Cheng YW, et al. Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: a batch to continuous approach. Renewable Sustainable Energy Rev. 2021;135:110148.
  • An Y, Tahmasebi A, Yu J. Mechanism of synergy effect during microwave co-pyrolysis of biomass and lignite. J Anal Appl Pyrolysis. 2017;128:75–82.
  • Mohamed BA, Ellis N, Kim CS, et al. Microwave-assisted catalytic biomass pyrolysis: effects of catalyst mixtures. Appl Catal, B. 2019;253:226–234.
  • Suriapparao DV, Boruah B, Raja D, et al. Microwave assisted co-pyrolysis of biomasses with polypropylene and polystyrene for high quality bio-oil production. Fuel Process Technol. 2018;175:64–75.
  • Li H, Li J, Fan X, et al. Insights into the synergetic effect for co-pyrolysis of oil sands and biomass using microwave irradiation. Fuel. 2019;239:219–229.
  • Wang W, Wang M, Huang J, et al. Microwave-assisted catalytic pyrolysis of cellulose for phenol-rich bio-oil production. J Inst Energy. 2019;92(6):1997–2003.
  • Zhu L, Zhang Y, Lei H, et al. Production of hydrocarbons from biomass-derived biochar assisted microwave catalytic pyrolysis. Sustain Energy Fuels. 2018;2(8):1781–1790.
  • Zeng K, Li R, Minh DP, et al. Solar pyrolysis of heavy metal contaminated biomass for gas fuel production. Energy. 2019;187:116016.
  • Zeng K, Li R, Minh DP, et al. Characterization of char generated from solar pyrolysis of heavy metal contaminated biomass. Energy. 2020;206:118128.
  • Zeng K, Gauthier D, Minh DP, et al. Characterization of solar fuels obtained from beech wood solar pyrolysis. Fuel. 2017;188:285–293.
  • Weldekidan H, Strezov V, Town G, et al. Production and analysis of fuels and chemicals obtained from rice husk pyrolysis with concentrated solar radiation. Fuel. 2018b;233:396–403.
  • Li R, Zeng K, Soria J, et al. Product distribution from solar pyrolysis of agricultural and forestry biomass residues. Renewable Energy. 2016;89:27–35.
  • Rony AH, Kong L, Lu W, et al. Kinetics, thermodynamics, and physical characterization of corn stover (Zea mays) for solar biomass pyrolysis potential analysis. Bioresour Technol. 2019;284:466–473.
  • Bashir M, Yu X, Hassan M, et al. Modeling and performance analysis of biomass fast pyrolysis in a solar-thermal reactor. ACS Sustainable Chem Eng. 2017;5(5):3795–3807.
  • Weldekidan H, Strezov V, Kan T, et al. Solar assisted catalytic pyrolysis of chicken-litter waste with in-situ and ex-situ loading of CaO and char. Fuel. 2019;246:408–416.
  • Barbosa JM, Andrade LA, Vieira LGM, et al. Multi-response optimization of bio-oil production from catalytic solar pyrolysis of spirulina platensis. J Inst Energy. 2020;93(4):1313–1323.
  • Hijazi A, Boyadjian C, Ahmad MN, et al. Solar pyrolysis of waste rubber tires using photoactive catalysts. Waste Manag. 2018;77:10–21.
  • Kuppens T, Van Dael M, Vanreppelen K, et al. Techno-economic assessment of fast pyrolysis for the valorization of short rotation coppice cultivated for phytoextraction. J Cleaner Prod. 2015;88:336–344.
  • Lam SS, Wan Mahari WA, Ok YS, et al. Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: recovery of cleaner liquid fuel and techno-economic analysis. Renewable Sustainable Energy Rev. 2019;115:109359.
  • Bhatia SK, Jagtap SS, Bedekar AA, et al. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. Sci Total Environ. 2021;765:144429.
  • Kung C-C, Zhang N. Renewable energy from pyrolysis using crops and agricultural residuals: an economic and environmental evaluation. Energy. 2015;90:1532–1544.
  • Meyer PA, Snowden-Swan LJ, Rappé KG, et al. Field-to-fuel performance testing of lignocellulosic feedstocks for fast pyrolysis and upgrading: techno-economic analysis and greenhouse gas life cycle analysis. Energy Fuels. 2016;30(11):9427–9439.
  • Snowden-Swan LJ, Spies KA, Lee GJ, et al. Life cycle greenhouse gas emissions analysis of catalysts for hydrotreating of fast pyrolysis bio-oil. Biomass Bioenergy. 2016;86:136–145.
  • Michailos S, Parker D, Webb C. A techno-economic comparison of Fischer–Tropsch and fast pyrolysis as ways of utilizing sugar cane bagasse in transportation fuels production. Chem Eng Res Des. 2017;118:206–214.
  • Ramirez JA, Rainey TJ. Comparative techno-economic analysis of biofuel production through gasification, thermal liquefaction and pyrolysis of sugarcane bagasse. J Cleaner Prod. 2019;229:513–527.
  • Zein SH, Antony A. Techno-economic analysis and feasibility of industrial-scale activated carbon production from agricultural pea waste using microwave-assisted pyrolysis: a circular economy approach. Processes. 2022;10(9):1702.
  • Patel H, Maiti P, Maiti S. Techno-economic assessment of bio-refinery model based on co-pyrolysis of cotton boll crop-residue and plastic waste. Biofuels Bioprod Bioref. 2022;16(1):155–171.
  • López-González D, Puig-Gamero M, Acién FG, et al. Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils. Renewable Sustainable Energy Rev. 2015;51:1752–1770.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.