60
Views
0
CrossRef citations to date
0
Altmetric
Articles

Characterization of agricultural biomass by particle induced x-ray emission and Rutherford backscattering techniques

, , , &
Pages 521-527 | Received 01 Aug 2022, Accepted 21 Nov 2022, Published online: 06 Dec 2022

References

  • Van de Velden M, Baeyens J, Brems A, et al. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew Energy. 2010;35:232–242.
  • European Commission. Sustainable and optimal use of biomass for energy in the EU beyond 2020. 2020. https://ec.europa.eu/energy/sites/ener/files/documents/biosustain_report_final.pdf.
  • Adewole BZ, Adeboye BS, Malomo BO, et al. CO-pyrolysis of bituminous coal and coconut shell blends via thermogravimetric analysis. Energy Sources A. 2020;1–14.
  • Shen J, Zhu S, Liu X, et al. The prediction of elemental composition of biomass-based on proximate analysis. Energy Convers Manage. 2010;51(5):983–987.
  • Braz CE, Crnkovic P. Physical-chemical characterization of biomass samples for application in pyrolysis process. Chem Eng Trans. 2014;37:523–528.
  • Mlonka-Mędrala A, Magdziarz A, Gajek M, et al. Alkali metals association in biomass and their impact on ash melting behaviour. Fuel. 2020;261:116421.
  • Stihi C, Popescu IV, Busuioc G, et al. Particle induced X-ray emission (PIXE) analysis of Basella Alba L leaves. J Radioanal Nucl Chem. 2000;246(2):445–447.
  • Onumejor CA, Balogun FA, Akinpelu A, et al. Rutherford backscattering spectrometry (RBS) method for the determination of elemental constituent of tropical wood matrices from Western Nigeria. IOP Conf Ser: Earth Environ Sci. 2018;173:012005.
  • Uo M, Wada T, Sugiyama T. Applications of X-ray fluorescence analysis (XRF) to dental and medical specimens. Jpn Dent Sci Rev. 2015;51(1):2–9.
  • Boufleur LA, dos Santos CEI, Debastiani R, et al. Elemental characterization of Brazilian canned tuna fish using particle-induced x-ray emission (PIXE). J Food Compos Anal. 2013;30(1):19–25.
  • Medeiros I, Zamboni CB, Goncalves de Medeiros JA, et al. Multi-elemental analysis of genetically modified food using ANAA and PIXE techniques. Braz J Phys. 2005;35(3b):814–817.
  • Terakawa A, Ishii K, Arikawa J, et al. PIXE analysis of peanuts planted in Japan and imported from abroad. Int J PIXE. 2008;18(03n04):253–259.
  • Kocsonya A, Guguianu O, Demeter I, et al. Pixe determination of Pb in wine. Nucl Instrum Methods Phys Res B. 2002;189(1–4):511–515.
  • dos Santos CEI, da Silva LRM, Boufleur LA, et al. Elemental characterization of cabernet sauvignon wines using particle-induced X-ray emission (PIXE). Food Chem. 2010;121(1):244–250.
  • Giulian R, dos Santos CEI, Shubeita SM, et al. Elemental characterization of commercial mate tea leaves (ilex paraguariensis) before and after hot water infusion using ion beam techniques. J Agric Food Chem. 2007;55(3):741–746.
  • Rajan JP, Singh KB, Kumar SB, et al. Trace elements content in the selected medicinal plants traditionally used for curing skin diseases by the natives of Mizoram, India. Asian Pac J Trop Med. 2014;7(Suppl 1):S410–S414.
  • Adeoye AE, Ajenifuja E, Taleatu BA, et al. Rutherford backscattering spectrometry analysis and structural properties of ZnxPb1−xS thin films deposited by chemical spray pyrolysis. J Mater. 2015;2015:1–8.
  • Vassilev SV, Baxter D, Andersen LK, et al. An overview of the chemical composition of biomass. Fuel. 2010;89(5):913–933.
  • Dermibas A. Combustion characteristics of different biomass fuels. Prog Energy Combust Sci. 2004;30(2):219–230.
  • Werther J, Saenger M, Hartge EU, et al. Combustion of agricultural residue. Prog Energy Combust Sci. 2000;26(1):1–27.
  • Vassilev SV, Vassileva CG. A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behaviour. Fuel. 2007;86(10–11):1490–1512.
  • Van Loo S, Koppejan J. The handbook of biomass combustion and co-firing. London; Sterling (VA): Earthscan; 2008. 442 p.
  • Pichet N, Vladimir IK. Combustion of oil palm shells in a fluidized-bed combustor using dolomite as the bed material to prevent bed agglomeration. Energy Procedia. 2014;52:399–409.
  • Okoroigwe EC, Saffron CM. Determination of bio-energy potential of palm kernel shell by physicochemical characterization. Niger J Technol (NIJOTECH). 2012;31(3):329–335.
  • Hussain M, Zabiri H, Tufa LD, et al. A kinetic study and thermal decomposition characteristics of palm kernel shell using model-fitting and model-free methods. Biofuels. 2022;13(1):105–116.
  • Khuenkaeo N, Tippayawong N. Production and characterization of bio-oil and biochar from ablative pyrolysis of lignocellulosic biomass residues. Chem Eng Commun. 2020;207(2):153–160.
  • Mahir S, Geoffrey J, Cuthbert M, et al. The study of kinetic properties and analytical pyrolysis of coconut shells, 2015. J Renew Energy. 2015;2015:1–8.
  • Harvindran V, Choon FW, Navin RV, et al. Insight into co‑pyrolysis of palm kernel shell (PKS) with palm oil sludge (POS): effect on bio‑oil yield and properties. Waste Biomass Valor. 2019.
  • Rodríguez-Soalleiro R, Eimil-Fraga C, Gómez-García E, et al. Exploring the factors affecting carbon and nutrient concentrations in tree biomass components in natural forests, Forest plantations and short rotation forestry. For Ecosyst. 2018;5(1):1–18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.