112
Views
0
CrossRef citations to date
0
Altmetric
Articles

Optimization of process variables for metallic nanoparticle inclusion in bioethanol synthesis of sugar cane bagasse

, , &
Pages 655-660 | Received 15 Sep 2022, Accepted 01 Jan 2023, Published online: 09 Jan 2023

References

  • Betiku E, Taiwo AE. Modeling and optimization of bioethanol production from breadfruit starch hydrolyzate vis-à-vis response surface methodology and artificial neural network. Renew Energy. 2015;74:87–94.
  • Olalere OA, Gan C-Y, Taiwo AE, et al. Emerging trends in bioreactor systems for an improved wastes valorization. In: Puranjan M, Lakhveer S, Pooja G, editor. Techno-economics and life cycle assessment of bioreactors. Netherlands: Elsevier; 2022. p. 23–35.
  • Taiwo A, Madzimbamuto T, Ojumu T. Development of an integrated process for the production and recovery of some selected bioproducts from lignocellulosic materials. In: Daramola M, Ayeni A, editor. Valorization of biomass to value-added commodities. Green Energy and Technology. Cham: Springer; 2020. p. 439–467.
  • Maryana R, Ma’rifatun D, Wheni A, et al. Alkaline pretreatment on sugarcane bagasse for bioethanol production. Energy Procedia. 2014;47:250–254.
  • Raj T, Chandrasekhar K, Kumar AN, et al. Recent advances in commercial biorefineries for lignocellulosic ethanol production: current status, challenges and future perspectives. Bioresour Technol. 2022;344(Pt B):126292.
  • DE Moraes Rocha GJ, Martin C, Soares IB, et al. Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production. Biomass Bioenergy. 2011;35(1):663–670.
  • Huang J, Khan MT, Perecin D, et al. Sugarcane for bioethanol production: potential of bagasse in chinese perspective. Renew Sustain Energy Rev. 2020;133:110296.
  • Ajala E, Ighalo J, Ajala M, et al. Sugarcane bagasse: a biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresour Bioprocess. 2021;8(1):1–25.
  • Betiku E, Adesina OA. Statistical approach to the optimization of citric acid production using filamentous fungus Aspergillus Niger grown on sweet potato starch hydrolyzate. Biomass Bioenergy. 2013;55:350–354.
  • Gomes MG, DOS Santos RV, Barreto EDS, et al. Pretreated sugarcane bagasse with citric acid applied in enzymatic hydrolysis. Ind Biotechnol. 2020;16(2):117–124.
  • Kumar A, Kumar V, Singh B. Cellulosic and hemicellulosic fractions of sugarcane bagasse: potential, challenges and future perspective. Int J Biol Macromol. 2021;169:564–582.
  • Wright M, Lima I, Bigner R. Microbial and physicochemical properties of sugarcane bagasse for potential conversion to value-added products. Int Sugar J. 2016;118:10–18.
  • Sanusi IA, Suinyuy TN, Kana GE. Impact of nanoparticle inclusion on bioethanol production process kinetic and inhibitor profile. Biotechnol Rep (Amst). 2021;29:e00585.
  • Arya I, Poona A, Dikshit PK, et al. Current trends and future prospects of nanotechnology in biofuel production. Catalysts. 2021;11(11):1308.
  • Sanusi IA, Faloye FD, Gueguim Kana ED. Impact of various metallic oxide nanoparticles on ethanol production by Saccharomyces cerevisiae BY4743: screening, kinetic study and validation on potato waste. Catal Lett. 2019;149(7):2015–2031. 10.1007/s10562-019-02796-6
  • Kim Y, Lee H. Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation bioresour. Bioresour Technol. 2016;204:139–144. 10.1016/j.biortech.2016.01.001
  • Devi A, Bajar S, Kour H, et al. Lignocellulosic biomass valorization for bioethanol production: a circular bioeconomy approach. Bioenergy Res. 2022;15:1820–1841.
  • Prochazkova G, Safarik I, Branyik T. Harvesting microalgae with microwave synthesized magnetic microparticles. Bioresour Technol. 2013;130:472–477.
  • Ghazanfari MR, Kashefi M, Shams SF, et al. Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochem Res Int. 2016:1–32. .
  • Wang M, Wang J, Tan J, et al. Optimization of ethanol fermentation from sweet sorghum juice using response surface methodology. Energy Sourc Part A. 2011;33(12):1139–1146.
  • Betiku E, Alade O. Media evaluation of bioethanol production from cassava starch hydrolysate using Saccharomyces cerevisiae. Energy Sourc Part A. 2014;36(18):1990–1998.
  • Davis L, Rogers P, Pearce J, et al. Evaluation of zymomonas-based ethanol production from a hydrolysed waste starch stream. Biomass Bioenergy. 2006;30(8-9):809–814.
  • Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426–428.
  • Sumbhate SV, Nayak S, Goupale D, et al. Colorimetric method for the estimation of ethanol in alcoholic-drinks. J Analyt Tech. 2012;1:1–6.
  • Taiwo AE, Madzimbamuto TN, Ojumu TV. Optimization of corn steep liquor dosage and other fermentation parameters for ethanol production by Saccharomyces cerevisiae type 1 and anchor instant yeast. Energies. 2018;11(7):1740.
  • Ahuja N, Chopra AK, Ansari AA. Removal of colour from aqueous solutions by using zero valent iron nanoparticles. J Environ Sci Toxicol Food Technol (IOSR-JESTFT). 2016;10:4–14.
  • Mondal A, Mondal A, Mukherjee D. Room-temperature synthesis of cobalt nanoparticles and their use as catalysts for methylene blue and Rhodamine-B dye degradation. Adv Nano Res. 2015;3(2):67–79.
  • Sawicki B, Tomaszewicz E, Piątkowska M, et al. Correlation between the band-gap energy and the electrical conductivity in MPr2W2O10 tungstates (where M = Cd, Co, Mn). Acta Physica Polonica. 2016;129:A–94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.