152
Views
0
CrossRef citations to date
0
Altmetric
Research Article

NaCl stress mediated lipid and carotenoid production in freshwater microalga Kirchneriella obesa by optimization of medium composition using response surface methodology

ORCID Icon, , ORCID Icon &
Pages 883-894 | Received 15 Dec 2022, Accepted 09 Mar 2023, Published online: 20 Mar 2023

References

  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev. 2010;14(1):217–232.
  • Ullah K, Ahmad M, Sharma VK, et al. Assessing the potential of algal biomass opportunities for bioenergy industry: a review. Fuel. 2015;143:414–423.
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.
  • Sarada RMGP, Pillai MG, Ravishankar GA. Phycocyanin from spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochem. 1999;34(8):795–801.
  • Ajayan KV, Saranya K, Harilal CC. Indole-3-butyric acid mediated growth and biochemical enhancement in three selenastracean green microalgae under limited supply of nitrogen source. J Biotechnol. 2022;351:60–73.
  • Barrow C, Shahidi F. (eds.). Marine nutraceuticals and functional foods 1st ed.. Boca Raton: CRC press; 2007
  • Cheng P, Li Y, Wang C, et al. Integrated marine microalgae biorefineries for improved bioactive compounds: a review. Sci Total Environ. 2022;817:152895.
  • Sathasivam R, Radhakrishnan R, Hashem A, et al. Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci. 2019;26(4):709–722.
  • Haniewicz P, Abram M, Nosek L, et al. Molecular mechanisms of photoadaptation of photosystem I supercomplex from an evolutionary cyanobacterial/algal intermediate. Plant Physiol. 2018;176(2):1433–1451.
  • Noel SD, Rajan MR. Cyanobacteria as a potential source of phycoremediation from textile industry effluent. J Bioremed Biodegrad. 2014;5(7):260.
  • Ajayan KV, Harilal CC, Selvaraju M. Phycoremediation resultant lipid production and antioxidant changes in green microalgae Chlorella sp. Int J Phytoremediation. 2018;20(11):1144–1151.
  • Chokshi K, Pancha I, Ghosh A, et al. Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae Acutodesmus dimorphus. Bioresour Technol. 2017;244(Pt 2):1376–1383.
  • Md Nadzir S, Yusof N, Nordin N, et al. Optimisation of carbohydrate, lipid and biomass productivity in Tetradesmus obliquus using response surface methodology. Biofuels. 2021;12(7):807–816.
  • Maurya R, Paliwal C, Ghosh T, et al. Applications of de-oiled microalgal biomass towards development of sustainable biorefinery. Bioresour Technol. 2016;214:787–796.
  • Pandit PR, Fulekar MH, Karuna MSL. Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris. Environ Sci Pollut Res Int. 2017;24(15):13437–13451.
  • Li Y, Horsman M, Wang B, et al. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol. 2008;81(4):629–636.
  • Hsieh CH, Wu WT. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol. 2009;100(17):3921–3926.
  • Gao B, Xia S, Lei X, et al. Combined effects of different nitrogen sources and levels and light intensities on growth and fatty acid and lipid production of oleaginous eustigmatophycean microalga Eustigmatos cf. polyphem. J Appl Phycol. 2018;30(1):215–229.
  • Blinová L, Bartošová A, Gerulová K. Cultivation of microalgae (Chlorella vulgaris) for biodiesel production. Research Papers Faculty of Materials Science and Technology Slovak University of Technology. 2015;23(36):87–95.
  • Bajwa K, Bishnoi NR, Kirrolia A, et al. Response surface methodology as a statistical tool for optimization of physio-biochemical cellular components of microalgae Chlorella pyrenoidosa for biodiesel production. Appl Water Sci. 2019;9(5):1–16.
  • Box GEP, Behnken DW. Simplex-sum designs: a class of second order rotatable designs derivable from those of first order. Ann Mathe Stat. 1960;31(4):838–864.
  • Silambarasan TS, Bajwa K, Dhandapani R. Optimization and mass culture of acutodesmus obliquus RDS01 under open phototrophic pond cultivation for enhancing biodiesel production. Biofuels. 2017;8(2):243–252.
  • Lichtenthaler HK. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 1987;148:350–382.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193(1):265–275.
  • Van Wychen S, Laurens LM. Determination of total carbohydrates in algal biomass: laboratory analytical procedure (LAP) (No. NREL/TP-5100-60957). National Renewable Energy Lab.(NREL), Golden, CO (United States); 2016.
  • Nielsen SS. Total carbohydrate by phenol-sulfuric acid method. In Food analysis laboratory manual. Cham: Springer; 2017. 137–141.
  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–917.
  • Christie WW. 13‐Phenyltridec‐9‐enoic and 15‐phenylpentadec‐9‐enoic acids in arum maculatum seed oil. Eur J Lipid Sci Technol. 2003;105(12):779–780.
  • Chen W, Zhang C, Song L, et al. A high throughput nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods. 2009;77(1):41–47.
  • Nuutila AM, Aura AM, Kiesvaara M, et al. The effect of salinity, nitrate concentration, pH and temperature on eicosapentaenoic acid (EPA) production by the red unicellular alga Porphyridium purpureum. J Biotechnol. 1997;55(1):55–63.
  • Tazi K, Jamai L, Seddouk L, et al. Improving carbohydrate accumulation in Chlamydomonas debaryana induced by sulfur starvation using response surface methodology. Environ Sci Pollut Res Int. 2022;29(16):23949–23962.
  • González-Vega RI, Cárdenas-López JL, López-Elías JA, et al. Optimization of growing conditions for pigments production from microalga Navicula incerta using response surface methodology and its antioxidant capacity. Saudi J Biol Sci. 2021;28(2):1401–1416.
  • Chakravarty S, Mallick N. Optimization of lipid accumulation in an aboriginal green microalga Selenastrum sp. GA66 for biodiesel production. Biomass Bioenergy. 2019;126:1–13.
  • Dani N, Zare D, Assadi MM, et al. Isolation, screening and medium optimization of native microalgae for lipid production using nutritional starvation strategy and statistical design. Int J Environ Sci Technol. 2021;18(10):2997–3012.
  • Pancha I, Chokshi K, Maurya R, et al. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol. 2015;189:341–348.
  • Fawzy MA. Fatty acid characterization and biodiesel production by the marine microalga Asteromonas gracilis: statistical optimization of medium for biomass and lipid enhancement. Mar Biotechnol (NY). 2017;19(3):219–231.
  • Wang J, Liu X, Wang XD, et al. Selective synthesis of human milk fat-style structured triglycerides from microalgal oil in a microfluidic reactor packed with immobilized lipase. Bioresour Technol. 2016;220:132–141.
  • Hlaing SAA, Sadiq MB, Anal AK. Enhanced yield of Scenedesmus obliquus biomacromolecules through medium optimization and development of microalgae based functional chocolate. J Food Sci Technol. 2020;57(3):1090–1099.
  • Song X, Zhao Y, Han B, et al. Strigolactone mediates jasmonic acid-induced lipid production in microalga Monoraphidium sp. QLY-1 under nitrogen deficiency conditions. Bioresour Technol. 2020;306:123107.
  • Chen W, Wang Y, Han D, et al. Effects of dietary supplementation with filamentous microalgae (Oedocladium sp. or Tribonema ultriculosum) on growth performance, fillet fatty acid composition, skin pigmentation, and immune response of yellow catfish Pelteobagrus fulvidraco. J World Aquacult Soc. 2021;52(6):1273–1289.
  • Xu S, Hu S, Zhu K, et al. Effects of CO2 concentration and light intensity on macromolecules accumulation of Micractinium sp. Biomass Bioenergy. 2022;163:106522.
  • Mehra A, Zafar SU, Jutur PP. Optimization of biomass production by Chlorella saccharophila UTEX 247 employing response surface methodology. Biomass Convers Biorefin. 2022:1–13.
  • Juneja A, Ceballos R, Murthy G. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies. 2013;6:4607–4638.
  • Gour RS, Garlapati VK, Kant A. Effect of salinity stress on lipid accumulation in scenedesmus sp. and chlorella sp.: feasibility of stepwise culturing. Current Microbiol. 2020;77(5):779–785.
  • Mohy El-Din S. Effect of seawater salinity concentrations on growth rate, pigment contents and lipid concentration in Anabaena fertilissma. Catrina. Int J Environ Sci. 2015;11(1):59–65.
  • El-Mekkawi SA, Hussein HS, El-Enin SA, et al. Assessment of stress conditions for carotenoids accumulation in Chlamydomonas reinhardtii as added-value algal products. Bull Nat Res Centre. 2019;43(1):1–9.
  • Liang S, Guo L, Lin G, et al. Improvement of Nannochloropsis oceanica growth performance through chemical mutation and characterization of fast growth physiology by transcriptome profiling. Chin J Oceanol Limnol. 2017;35(4):792–802.
  • Wang C, Zhao S, Shao X, et al. Challenges and tackles in metabolic engineering for microbial production of carotenoids. Microb Cell Fact. 2019;18(1):1–8.
  • Juergens MT, Deshpande RR, Lucker BF, et al. The regulation of photosynthetic structure and function during nitrogen deprivation in Chlamydomonas reinhardtii. Plant Physiol. 2015;167(2):558–573.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.