368
Views
0
CrossRef citations to date
0
Altmetric
Review

A review of microalgal cell wall composition and degradation to enhance the recovery of biomolecules for biofuel production

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 979-997 | Received 21 Sep 2022, Accepted 26 Mar 2023, Published online: 02 May 2023

References

  • Dong T, Knoshaug E, Pienkos P, et al. Lipid recovery from wet oleaginous microbial biomass for biofuel production: a critical review. Appl Energy. 2016;177:879–895.
  • Chen J, Li J, Dong W, et al. The potential of microalgae in biodiesel production. Renew Sust Energ Rev. 2018;90:336–346.
  • Kröger M, Klemm M, Nelles M. Hydrothermal disintegration and extraction of different microalgae species. Energies. 2018;11(2):450.
  • Günerken E, D'Hondt E, Eppink M, et al. Cell disruption for microalgae biorefineries. Biotechnol Adv. 2015;33(2):243–260.
  • Xu Y, Xu Y, Yue X. Changes of hydrogen bonding and aggregation structure of cellulose fiber due to microwave-assisted alkali treatment and its impacts on the application as fluff pulp. Cellulose. 2017;24(2):967–976.
  • Lari Z, Ahmadzadeh H, Hosseini M. Chapter 2: Cell wall disruption: a critical upstream process for biofuel production. In: Advances in feedstock conversion technologies for alternative fuels and bioproducts. Cambridge: Woodhead Publishing; 2019. p. 21–35.
  • Blanco-Llamero C, García-García P, Señoráns FJ. Cross-linked enzyme aggregates and their application in enzymatic pre-treatment of microalgae: comparison between CLEAs and combi-CLEAs. Front Bioeng Biotechnol. 2021;9:794672.
  • Gomes T, Zanette C, Spier M. An overview of cell disruption methods for intracellular biomolecules recovery. Prep Biochem Biotechnol. 2020;50(7):635–654.
  • Huang W, Kim J. Cationic surfactant-based method for simultaneous harvesting and cell disruption of a microalgal biomass. Bioresour Technol. 2013;149:579–581.
  • Zhang Y, Kang X, Zhen F, et al. Assessment of enzyme addition strategies on the enhancement of lipid yield from microalgae. Biochem Eng J. 2022;177:108198.
  • Ho S, Li P, Liu C, et al. Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresour Technol. 2013;145:142–149.
  • Demuez M, González-Fernández C, Ballesteros M. Algicidal microorganisms and secreted algicides: new tools to induce microalgal cell disruption. Biotechnol Adv. 2015;33(8):1615–1625.
  • Halim R, Hill D, Hanssen E, et al. Thermally coupled dark-anoxia incubation: a platform technology to induce auto-fermentation and thus cell-wall thinning in both nitrogen-replete and nitrogen-deplete Nannochloropsis slurries. Bioresour Technol. 2019;290:121769.
  • Kightlinger W, Chen K, Pourmir A, et al. Production and characterization of algae extract from Chlamydomonas reinhardtii. Electron J Biotechnol. 2014;17(1):14–18.
  • Bidle K. Programmed cell death in unicellular phytoplankton. Curr Biol. 2016;26(13):594–607.
  • Barsanti L, Gualtieri P. Algae: anatomy, biochemistry, and biotechnology. 2nd ed. Boca Raton Florida: CRC Press Taylor & Francis Group; 2014.
  • Nagarajan D, Chang J, Lee D. Pre-treatment of microalgal biomass for efficient biohydrogen production – recent insights and future perspectives. Bioresour Technol. 2020;302:122871.
  • Goswami RK, Agrawal K, Verma P. Microalgae Dunaliella as biofuel feedstock and β-carotene production: an influential step towards environmental sustainability. Energy Convers Manag. 2022;13:100154.
  • Patnaik R, Singh N, Bagchi S, et al. Utilization of Scenedesmus obliquus protein as a replacement of the commercially available fish meal under an algal refinery approach. Front in Microbiol. 2019;10:2114.
  • Nayaka S, Toppo K, Verma S. Adaptation in algae to environmental stress and ecological conditions. In: Plant adaptation strategies in changing environment. Singapore: Springer; 2017. p. 103–115.
  • Gonçalves CD, Figueredo CC. What we really know about the composition and function of microalgae cell coverings? − an overview. Acta Bot Bras. 2020;34(4):599–614.
  • Walter A, Mayer C. Peptidoglycan structure, biosynthesis, and dynamics during bacterial growth. Biol-Inspir Syst. 2019;12:237–299.
  • Alam M, Maniruzzaman M, Morshed M. Application and advances in microprocessing of natural fiber (jute)-based composites. Compr Mater Process. 2014;7:243–260.
  • Paz A, Chalima A, Topakas E. Biorefinery of exhausted olive pomace through the production of polygalacturonases and omega-3 fatty acids by Crypthecodinium cohnii. Algal Res. 2021;59:102470.
  • Dixon C, Wilken L. Green microalgae biomolecule separations and recovery. Bioresour and BioProcess. 2018;5(1):1–24.
  • Weber S, Grande P, Blank L, et al. Insights into cell wall disintegration of Chlorella vulgaris. PLoS One. 2022;17(1):e0262500.
  • Scholz MJ, Weiss TL, Jinkerson RE, et al. Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryot Cell. 2014;13(11):1450–1464.
  • Yukesh Kannah R, Kavitha S, Parthiba Karthikeyan O, et al. A review on anaerobic digestion of energy and cost-effective microalgae pre-treatment for biogas production. Bioresour Technol. 2021;332:125055.
  • Nishshanka G, Liyanaarachchi V, Nimarshana P, et al. Haematococcus pluvialis: a potential feedstock for multiple-product biorefining. J of Clean Prod. 2022;344:131103.
  • Borowitzka, M. Chapter 3: Biology of microalgae. In: Microalgae in health and disease prevention. NY: Academic Press; 2018. p. 23–72.
  • Polle J, Barry K, Cushman J, et al. Draft nuclear genome sequence of the halophilic and beta-carotene-accumulating green alga Dunaliella salina strain CCAP19/18. Genome Announc. 2017;5(43):e01105–17.
  • Lee RE. Phycology. 4th ed. NewYork (NY): Cambridge University Press; 2018.
  • Ambrosio R, Rizza L, Nascimento M, et al. Promises and challenges for expanding the use of N2-fixing cyanobacteria as a fertilizer for sustainable agriculture. In: Cyanobacterial lifestyle and its application in biotechnology. NY: Academic Press; 2022; p. 99−158.
  • Skeffington A, Scheffel A. Exploiting algal mineralization for nanotechnology: bringing coccoliths to the fore. Curr Opin Biotechnol. 2018;49:57–63.
  • Leynaert A, Fardel C, Beker B, et al. Diatom frustules nanostructure in pelagic and benthic environments. Silicon. 2018;10(6):2701–2709.
  • Kristiansen J, Škaloud P. Handbook of the protists. Cham: Springer; 2016. p. 1–38.
  • Safi C, Ursu A, Laroche C, et al. Aqueous extraction of proteins from microalgae: effect of different cell disruption methods. Algal Res. 2014;3:61–65.
  • Alavijeh R, Karimi K, Wijffels R, et al. Combined bead milling and enzymatic hydrolysis for efficient fractionation of lipids, proteins, and carbohydrates of Chlorella vulgaris microalgae. Bioresour Technol. 2020;309:123321.
  • Wang M, Chen S, Zhou W, et al. Algal cell lysis by bacteria: a review and comparison to conventional methods. Algal Res. 2020;46:101794.
  • Aratboni H, Rafiei N, Garcia-Granados R, et al. Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb Cell Fact. 2019;18(1):178–195.
  • Sajjadi B, Chen W, Raman AA, et al. Microalgae lipid and biomass for biofuel production: a comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renew Sustain Energy Rev. 2018;97:200–232.
  • Jia J, Han D, Gerken HG, et al. Molecular mechanisms for photosynthetic carbon partitioning into storage neutral lipids in Nannochloropsis oceanica under nitrogen-depletion conditions. Algal Res. 2015;7:66–77.
  • Alam M, Maniruzzaman M, Morshed M. Application and advances in micro processing of natural fiber (jute)-based composites. Sci Mater Process. 2014;7:243–260.
  • Pancha I, Chokshi K, George B, et al. Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol. 2014;156:146–154.
  • Mohan S, Rohit M, Subhash G, et al. Algal oils as biodiesel. In: Biofuels from Algae. 2019. p. 287 − 323.
  • Hu X, Liu B, Deng Y, et al. A novel two-stage culture strategy used to cultivate Chlorella vulgaris for increasing the lipid productivity. Sep and Purif Technol. 2019;211:816–822.
  • Md-Nadzir S, Yusof N, Nordin N, et al. Production of lipid and carbohydrate in Tetradesmus obliquus UPSI-JRM02 under nitrogen stress condition. J Teknol. 2021;83(2):27–35.
  • Maity J, Bundschuh J, Chen C, et al. Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives – a mini review. Energy. 2014;78:104–113.
  • Shen P, Wang H, Pan Y, et al. Identification of characteristic fatty acids to quantify triacylglycerols in microalgae. Front in Plant Sci. 2016;7:1–7.
  • Matos Â, Cavanholi M, Moecke E, et al. Effects of different photoperiod and trophic conditions on biomass, protein and lipid production by the marine alga Nannochloropsis gaditana at optimal concentration of desalination concentrate. Bioresour Technol. 2017;224:490–497.
  • Nordin N, Yusoff N, Md-Nadzir S, et al. Optimisation of biomass, lipid and carbohydrate productivities in Chlorella vulgaris for biofuel production. J Teknol. 2022;84(2):47–57.
  • Kudahettige PN, Pickova J, Gentili F. Stressing algae for biofuel production: biomass and biochemical composition of Scenedesmus dimorphus and Selenastrum minutum grown in municipal untreated wastewater. Front in Energy Res. 2018;6:1–10.
  • Shen X, Hu H, Ma L, et al. FAMEs production from Scenedesmus obliquus in autotrophic, heterotrophic, and mixotrophic cultures under different nitrogen conditions. Environ. Sci.: Water Res. Technol. 2018;4(3):461–468.
  • Savvidou M, Boli E, Logothetis D, et al. A study on the effect of macro- and micro-nutrients on Nannochloropsis oceanica growth, fatty acid composition, and magnetic harvesting efficiency. Plants. 2020;9(5):660.
  • Kumar N, Banerjee C, Jagadevan S. Identification, characterization, and lipid profiling of microalgae Scenedesmus sp. NC1, isolated from coal mine effluent with potential for biofuel production. Biotechnol Rep. 2021;30:00621.
  • Sayan T, Ayush P, Vijayalakshmi S, et al. Optimization of growth and lipid production of the chlorophyte microalga Chlorella vulgaris as a feedstock for biodiesel production. Int J of ChemTech Res. 2013;9(11):54–62.
  • Thawechai T, Cheirsilp B, Louhasakul Y, et al. Mitigation of carbon dioxide by oleaginous microalgae for lipids and pigments production: effect of light illumination and carbon dioxide feeding strategies. Bioresour Technol. 2016;219:139–149.
  • Shekh AY, Shrivastava P, Gupta A, et al. Biomass and lipid enhancement in Chlorella sp. with emphasis on biodiesel quality assessment through detailed FAME signature. Bioresour Technol. 2016;201:276–286.
  • Carullo D, Abera B, Casazza A, et al. Effect of pulsed electric fields and high-pressure homogenization on the aqueous extraction of intracellular compounds from the microalgae Chlorella vulgaris. Algal Res. 2018;31:60–69.
  • Becker EW. Microalgae as a source of protein. Biotechnol Adv. 2007;25(2):207–210.
  • Hu Y, Bassi A, Xu C. Energy from biomass. In: Future Energy. UK: Elsevier; 2020. p. 447–471.
  • Mollers K, Cannella D, Jørgensen H, et al. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol for Biofuels. 2014;7(64):1–11.
  • Costa J, Lucas B, Alvarenga A, et al. Microalgae polysaccharides: an overview of production, characterization, and potential applications. Polysaccharides. 2021;2(4):759–772.
  • Chanda MJ, Merghoub N, Arroussi HE. Microalgae polysaccharides: the new sustainable bioactive products for the development of plant bio-stimulants?. World J Microbiol Biotechnol. 2019;35:177.
  • Kumar D, Kaštánek P, Adhikary SP. Exopolysaccharides from cyanobacteria and microalgae and their commercial application. Curr Sci. 2018;115(2):234–241.
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energ Rev. 2010;14(1):217–232.
  • El-Naggar N, Hussein M, Shaaban-Dessuuki S, et al. Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Sci Rep. 2020;10(1):3011.
  • Wan X, Ai C, Chen Y, et al. Physicochemical characterization of a polysaccharide from green microalga Chlorella pyrenoidosa and its hypolipidemic activity via gut microbiota regulation in rats. J Agric Food Chem. 2020;68(5):1186–1197.
  • Li Y, Wang C, Liu H, et al. Production, isolation and bioactive estimation of extracellular polysaccharides of green microalga Neochloris oleoabundans. Algal Res. 2020;48:101883.
  • Liberman GN, Ochbaum G, Mejubovsky-Mikhelis M, et al. Physico-chemical characteristics of the sulfated polysaccharides of the red microalgae Dixoniella grisea and Porphyridium aerugineum. Int J Biol Macromol. 2020;145:1171–1179.
  • Lee A, Lewis D, Ashman P. Disruption of microalgal cells for the extraction of lipids for biofuels: processes and specific energy requirements. Biomass Bioenergy. 2012;46:89–101.
  • Gong M, Bassi A. Carotenoids from microalgae: a review of recent developments. Biotechnol Adv. 2016;34(8):1396–1412.
  • Lee JY, Yoo C, Jun SY, et al. Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol. 2010;101:75–77.
  • Harrison S. Cell disruption. In: Comprehensive biotechnology. NY: Academic Press; 2011. p. 619–640.
  • Lam G, Postma P, Fernandes D, et al. Pulsed electric field for protein release of the microalgae Chlorella vulgaris and Neochloris oleoabundans. Algal Res. 2017;24:181–187.
  • Patil P, Gude V, Mannarswamy A, et al. Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions. Fuel. 2012;97:822–831.
  • Lenneman EM, Wang P, Barney BM. Potential application of algicidal bacteria for improved lipid recovery with specific algae. FEMS Microbiol Lett. 2014;354(2):102–110.
  • Sun Z, Zhou Z. Nature-inspired virus-assisted algal cell disruption for cost-effective biofuel production. Appl Energy. 2019;251:113330.
  • Horas E, Theodosiou L, Becks L. Why are algal viruses not always successful? Viruses. 2018;10(9):474.
  • Cronmiller E, Toor D, Shao N, et al. Cell wall integrity signaling regulates cell wall-related gene expression in Chlamydomonas reinhardtii. Sci Rep. 2019;9(1):1–14.
  • Halim R, Hill DR, Hanssen E, et al. Towards sustainable microalgal biomass processing: anaerobic induction of autolytic cell-wall self-ingestion in lipid-rich Nannochloropsis slurries. Green Chem. 2019;21(11):2967–2982.
  • Ciudad G, Rubilar O, Azócar L, et al. Performance of an enzymatic extract in Botrycoccus braunii cell wall disruption. J Biosci Bioeng. 2014;117(1):75–80.
  • Treichel H, Fongaro G, Scapini T, et al. Waste biomass pre-treatment methods. In: Utilising biomass in biotechnology. Switzerland: Springer Cham; 2019. p. 19–48.
  • Kumar RR, Rao PH, Arumugam M. Lipid extraction methods from microalgae: a comprehensive review. Front in Energy Res. 2015;2:1–9.
  • Ganesan A, Nawkarkar P, Kumar S. Algal biodiesel: technology, hurdles, and future directions. In: Handbook of biofuels. NY: Academic Press; 2022 p. 331–351.
  • Suarez Garcia E, Lo C, Eppink M, et al. Understanding mild cell disintegration of microalgae in bead mills for the release of biomolecules. Chem Eng Sci. 2019;203:380–390.
  • Lødeng R, Bergem H. Stabilisation of pyrolysis oils. In: Direct thermochemical liquefaction for energy applications. Cambridge: Woodhead Publishing; 2018. p. 193–247.
  • Canelli G, Murciano Martínez P, Maude Hauser B, et al. Tailored enzymatic treatment of Chlorella vulgaris cell wall leads to effective disruption while preserving oxidative stability. LWT. 2021;143:111157.
  • Halim R, Papachristou I, Chen G, et al. The effect of cell disruption on the extraction of oil and protein from concentrated microalgae slurries. Bioresour Technol. 2022;346:126597.
  • Magpusao J, Giteru S, Oey I, et al. Effect of high-pressure homogenization on microstructural and rheological properties of A. platensis, isochrysis, nannochloropsis and tetraselmis species. Algal Res. 2021;56:102327.
  • Wang C, Lan C. Effects of shear stress on microalgae – a review. Biotechnol Adv. 2018;36(4):986–1002.
  • Shehadul Islam M, Aryasomayajula A, Selvaganapathy P. A review on macroscale and microscale cell lysis methods. Micromachines. 2017;8(3):83.
  • Gagné F. Tissue preparation and subcellular fractionation techniques. In: Biochemical ecotoxicology. NY: Academic Press; 2014. p. 21 − 31.
  • Kasim M, Meng T, Kamaludin R, et al. Bioprocess of sustainable renewable biomass for bioethanol production. Value-chain of biofuels. UK: Elsevier; 2022. p. 195–234.
  • Saranya N, Devi P, Nithiyanantham S, et al. Cells disruption by ultrasonication. BioNanoSci. 2014;4(4):335–337.
  • Greenly J, Tester J. Ultrasonic cavitation for disruption of microalgae. Bioresour Technol. 2015;184:276–279.
  • Skorupskaite V, Makareviciene V, Sendzikiene E, et al. Microalgae chlorella sp. cell disruption efficiency utilising ultrasonication and ultrahomogenisation methods. J Appl Phycol. 2019;31(4):2349–2354.
  • Ferreira A, Dias A, Silva C, et al. Effect of low frequency ultrasound on microalgae solvent extraction: analysis of products, energy consumption, and emissions. Algal Res. 2016;14:9–16.
  • Martinez-Guerra E, Gude V, Mondala A, et al. Microwave and ultrasound enhanced extractive-transesterification of algal lipids. Appl Energy. 2014;129:354–363.
  • Viner K, Champagne P, Jessop P. Comparison of cell disruption techniques prior to lipid extraction from Scenedesmus sp. slurries for biodiesel production using liquid CO2. Green Chem. 2018;20(18):4330–4338.
  • Mahnič-Kalamiza S, Vorobiev E, Miklavčič D. Electroporation in food processing and biorefinery. J Membr Biol. 2014;247(12):1279–1304.
  • Raso J, Frey W, Ferrari G, et al. Recommendations guidelines on the key information to be reported in studies of application of PEF technology in food and biotechnological processes. Innov Food Sci and Emerg Technol. 2016;37:312–321.
  • Lai Y, Zhou Y, Martarella R, et al. Synergistic integration of C12-C16 cationic surfactants for flocculation and lipid extraction from chlorella biomass. ACS Sustainable Chem. Eng. 2017;5(1):752–757.
  • Saadon S, Osman N, Yusup S. Pre-treatment of fiber-based biomass material for lignin extraction. Value-Chain of Biofuels. UK: Elsevier; 2022. p. 105–135.
  • Lee H, Lee Y, Heo Y, et al. Optimization of endoglucanase production by Trichoderma harzianum KUC1716 and enzymatic hydrolysis of lignocellulosic biomass. Bioresour. 2015;10(4):7466–7476.
  • Pradhan N, Kumar S, Selvasembian R, et al. Emerging trends in the pre-treatment of microalgal biomass and recovery of value-added products: a review. Bioresour Technol. 2023;369:128395.
  • Imai I, Inaba N, Yamamoto K. Harmful algal blooms and environmentally friendly control strategies in Japan. Fish Sci. 2021;87(4):437–464.
  • Zhang B, Cai G, Wang H, et al. Streptomyces alboflavus RPS and its novel and high algicidal activity against harmful algal bloom species Phaeocystis globosa. PLoS One. 2014;9(3):e92907.
  • Meyer N, Bigalke A, Kaulfuß A, et al. Strategies and ecological roles of algicidal bacteria. FEMS Microbiol Rev. 2017;41(6):880–899.
  • Coyne K, Wang Y, Johnson G. Algicidal bacteria: a review of current knowledge and applications to control harmful algal blooms. Front in Microbiol. 2022;13:1–23.
  • Heinrichs M, Tebbe D, Wemheuer B, et al. Impact of viral lysis on the composition of bacterial communities and dissolved organic matter in deep-sea sediments. Viruses. 2020;12(9):922.
  • Knowles B, Bonachela J, Behrenfeld M, et al. Temperate infection in a virus-host system previously known for virulent dynamics. Nature Commun. 2020;11(1):4626.
  • Cann A. Viral replication cycle. In: Encyclopedia of Virology. NY: Academic Press; 2021p. 382–387.
  • Agarkova I, Lane L, Dunigan D, et al. Identification of a chlorovirus PBCV-1 protein involved in degrading the host cell wall during virus infection. Viruses. 2021;13(5):782.
  • Sanmukh G, Krishna K, Rajshree H, et al. Increasing the extraction efficiency of algal lipid for biodiesel production: novel application of algal viruses. Afr. J. Biotechnol. 2014;13(15):1666–1670.
  • Hajnal I, Chen X, Chen G. A novel cell autolysis system for cost-competitive downstream processing. Appl Microbiol Biotechnol. 2016;100(21):9103–9110.
  • Hoffmann XK, Beck CF. Mating-induced shedding of cell walls, removal of walls from vegetative cells, and osmotic stress induce presumed cell wall genes in chlamydomonas. Plant Physiol. 2005;139(2):999–1014.
  • Sierra L, Wilken LR, Dixon CK. Aqueous enzymatic protein and lipid release from the microalgae Chlamydomonas reinhardtii. Bioresours and BioProcess. 2020;7:1–14.
  • Liu Z, Qiao K, Tian L, et al. Spontaneous large-scale autolysis in Clostridium acetobutylicum contributes to generation of more spores. Front in Microbiol. 2015;6:1–7.
  • Zou Y, Bozhkov P. Chlamydomonas proteases: classification, phylogeny, and molecular mechanisms. J Exp Bot. 2021;72(22):7680–7693.
  • Pandey S, Singh S, Pathak C, et al. “Programmed cell death: a process of death for survival” - how far terminology pertinent for cell death in unicellular organisms. J Cell Death. 2018;11:117906601879025.
  • Escamez S, Tuominen H. Programmes of cell death and autolysis in tracheary elements: when a suicidal cell arranges its own corpse removal. J Exp Bot. 2014;65(5):1313–1321.
  • Locato V, Gara D. L. Programmed cell death in plants: an overview. In: Plant programmed cell death: methods in molecular biology. NY: Humana Press; 2018. p. 1 − 8.
  • Escamez S, Tuominen H. Contribution of cellular autolysis to tissular functions during plant development. Curr Opin Plant Biol. 2017;35:124–130.
  • Choi C, Berges J. New types of metacaspases in phytoplankton reveal diverse origins of cell death proteases. Cell Death and Dis. 2013;4(2):490–490.
  • Julien O, Wells J. Caspases and their substrates. Cell Death Differ. 2017;24(8):1380–1389.
  • Kim E, Lee D, Seo M, et al. Intracellular Ca2+ imbalance critically contributes to paraptosis. Front in Cell and Dev Biol. 2021;8:607844.
  • Jiménez C, Capasso JM, Edelstein CL, et al. Different ways to die: cell death modes of the unicellular chlorophyte dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase. J Exp Bot. 2009;60(3):815–828.
  • Aguilera A, Berdun F, Bartoli C, et al. C-ferroptosis is an iron-dependent form of regulated cell death in cyanobacteria. J Cell Biol. 2021;221(2):e201911005.
  • Yamada K, Yoshida K. Mechanical insights into the regulation of programmed cell death by p53 via mitochondria. Biochim Biophys Acta Mol Cell Res. 2019;1866(5):839–848.
  • Glick D, Barth S, Macleod K. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3–12.
  • Trond L, Terje J. Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int J of Cell Biol. 2012;736905:21.
  • Jiang Y, Yoshida T, Quigg A. Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae. Plant Physiol Biochem. 2012;54:70–77.
  • Vasić K, Knez Ž, Leitgeb M. Bioethanol production by enzymatic hydrolysis from different lignocellulosic sources. Mol. 2021;26(3):753.
  • de Farias Silva CE, Meneghello D, de Souza Abud AK, et al. Pre-treatment of microalgal biomass to improve the enzymatic hydrolysis of carbohydrates by ultrasonication: yield vs energy consumption. J King Saud Uni – Sci. 2020;32(1):606–613.
  • Zhang R, Grimi N, Marchal L, et al. Effect of ultrasonication, high pressure homogenization and their combination on efficiency of extraction of bio-molecules from microalgae Parachlorella kessleri. Algal Res. 2019;40:101524.
  • Sydney T, Marshall-Thompson J, Kapoore R, et al. The effect of high-intensity ultraviolet light to elicit microalgal cell lysis and enhance lipid extraction. Metabolites. 2018;8(4):65.
  • Moharikar S, D'Souza JS, Kulkarni A, et al. Apoptotic-like cell death pathway is induced in unicellular chlorophyte Chlamydomonas reinhardtii (chlorophyceae) cells following UV irradiation: detection and functional analyses. J Phycol. 2006;42(2):423–433.
  • El-Sheekh M, Alwaleed E, Ibrahim A, et al. Detrimental effect of UV-B radiation on growth, photosynthetic pigments, metabolites and ultrastructure of some cyanobacteria and freshwater chlorophyta. Int J Radiat Biol. 2021;97(2):265–275.
  • Fal S, Aasfar A, Rabie R, et al. Salt induced oxidative stress alters physiological, biochemical and metabolomic responses of green microalga Chlamydomonas reinhardtii. Heliyon. 2022;8(1):e08811.
  • Affenzeller M, Darehshouri A, Andosch A, et al. Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. J Exp Bot. 2009;60(3):939–954.
  • Sathe S, Orellana MV, Baliga NS, et al. Temporal and metabolic overlap between lipid accumulation and programmed cell death due to nitrogen starvation in the unicellular chlorophyte Chlamydomonas reinhardtii. Phycological Res. 2019;67(3):173–183.
  • Kakarla R, Choi JW, Yun JH, et al. Application of high-salinity stress for enhancing the lipid productivity of Chlorella sorokiniana HS1 in a two-phase process. J Microbiol. 2018;56(1):56–64.
  • Song Y, Chen Q, Ci D, et al. Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biol. 2014;14:111.
  • Barreto-Filho MM, Durand PM, Andolfato NE, et al. Programmed cell death in the coccoid green microalga Ankistrodesmus densus korshikov (sphaeropleales, selenastraceae). Eur J Phycol. 2022;57(2):193–206.
  • Maltsev Y, Maltseva K, Kulikovskiy M, et al. Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition. Biology. 2021;10(10):1060.
  • Colina F, Carbó M, Meijón M, et al. Low UV-C stress modulates Chlamydomonas reinhardtii biomass composition and oxidative stress response through proteomic and metabolomic changes involving novel signalers and effectors. Biotechnol for Biofuels. 2020;13:1–19.
  • Moradi-Kheibari N, Ahmadzadeh H, Lyon S. Correlation of total lipid content of chlorella vulgaris with the dynamics of individual fatty acid growth rates. Front in Marine Sci. 2022;9:837067.
  • Hosseinzadeh-Gharajeh N, Valizadeh M, Dorani E, et al. Biochemical profiling of three indigenous Dunaliella isolates with main focus on fatty acid composition towards potential biotechnological application. Biotechnol Rep. 2020;26:00479.
  • Jeong SW, Nam SW, Hwangbo K, et al. Transcriptional regulation of cellulose biosynthesis during the early phase of nitrogen deprivation in Nannochloropsis salina. Sci Rep. 2017;7(1):1–11.
  • Bazzani E, Lauritano C, Mangoni O, et al. Chlamydomonas responses to salinity stress and possible biotechnological exploitation. J Marine Sci and Eng. 2021;9:12–42.
  • Zuppini A, Gerotto C, Baldan B. Programmed cell death and adaptation: two different types of abiotic stress response in a unicellular chlorophyte. Plant Cell Physiol. 2010;51(6):884–895.
  • Church J, Hwang J, Kim K, et al. Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production. Bioresour Technol. 2017;243:147–153.
  • Chokshi K, Pancha I, Trivedi K, et al. Biofuel potential of the newly isolated microalgae Acutodesmus dimorphus under temperature induced oxidative stress conditions. Bioresour Technol. 2015;180:162–171.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.