190
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Physicochemical characterization, thermal analysis and pyrolysis kinetics of lignocellulosic biomasses

, , , , , , & show all
Pages 1015-1026 | Received 06 Jan 2023, Accepted 07 Apr 2023, Published online: 21 Apr 2023

References

  • Chater H, Asbik M, Koukouch A, et al. Analysis of fluid flow and heat transfer inside a batch reactor for hydrothermal carbonization process of a biomass. Energies. 2022;15(3):818.
  • Miranda T, Arranz JI, Montero I, et al. Characterization and combustion of olive pomace and Forest residue pellets. Fuel Process Technol. 2012;103:91–96.
  • García GB, Calero De Hoces M, Martínez García C, et al. Characterization and modeling of pyrolysis of the two-phase olive mill solid waste. Fuel Process Technol. 2014;126:104–111.
  • Barbanera M, Lascaro E, Stanzione V, et al. Characterization of pellets from mixing olive pomace and olive tree pruning. Renew Energy. 2016;88:185–191.
  • Ghouma I, Jeguirim M, Guizani C, et al. Pyrolysis of olive pomace: degradation kinetics, gaseous analysis and char characterization. Waste Biomass Valor. 2017;8(5):1689–1697.
  • Mami MA, Mätzing H, Gehrmann HJ, et al. Investigation of the olive mill solid wastes pellets combustion in a counter-current fixed bed reactor. Energies. 2018;11(8):1965.
  • Bennini MA, Koukouch A, Bakhattar I, et al. Characterization and combustion of olive pomace in a fixed bed boiler: effects of particle sizes. IJHT. 2019;37(1):229–238.
  • Vasileiadou A, Zoras S, Iordanidis A. Bioenergy production from olive oil mill solid wastes and their blends with lignite: thermal characterization, kinetics, thermodynamic analysis, and several scenarios for sustainable practices. Biomass Convers Biorefinery. 2021;13:5325–5338.
  • Bakhattar I, Asbik M, Chater H, et al. Physicochemical and thermal characterization of olive pomace (biomass). 2021 9th International Renewable and Sustainable Energy Conference (IRSEC). IEEE; 2021, pp 1–6.
  • Elorf A, Bakhatar I, Asbik M, et al. Fixed-bed biomass combustor: air mass flow rate and particles size effects on ignition front propagation of solid olive waste. Combust Sci Technol. 2022;194(2):365–377.
  • Elorf A, Sarh B, Bonnamy S, et al. Injection type effects on pulverized biomass (solid olive waste) combustion in a 50 kW combustor. Int J Renew Energy Res. 2019;9:639–648.
  • Essabir H, Hilali E, Elgharad A, et al. Mechanical and thermal properties of bio-composites based on polypropylene reinforced with nut-shells of argan particles. Mater Des. 2013;49:442–448.
  • Essabir H, Achaby MEI, Hilali EM, et al. Morphological, structural, thermal and tensile properties of high density polyethylene composites reinforced with treated argan nut shell particles. J Bionic Eng. 2015;12(1):129–141.
  • Laaziz SA, Raji M, Hilali E, et al. Bio-composites based on polylactic acid and argan nut shell: production and properties. Int J Biol Macromol. 2017;104(Pt A):30–42.
  • Rahib Y, Elorf A, Sarh B, et al. Experimental analysis on thermal characteristics of argan nut shell (ANS) biomass as a green energy resource. Int J Renew Energy Res. 2019;9:1606–1615.
  • Sait HH, Hussain A, Salema AA, et al. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresour Technol. 2012;118:382–389.
  • El May Y, Jeguirim M, Dorge S, et al. Study on the thermal behavior of different date palm residues: characterization and devolatilization kinetics under inert and oxidative atmospheres. Energy. 2012;44(1):702–709.
  • Babiker ME, Aziz ARA, Heikal M, et al. Pyrolysis characteristics of phoenix dactylifera date palm seeds using Thermo-Gravimetric analysis (TGA). IJESD. 2013;4:521–524.
  • Elmay Y, Jeguirim M, Trouvé G, et al. Kinetic analysis of thermal decomposition of date palm residues using Coats-Redfern method. Energy Sources, A Recover Util Environ Eff. 2016;38(8):1117–1124.
  • Khelaifia FZ, Hazourli S, Nouacer S, et al. Valorization of raw biomaterial waste-date stones-for Cr (VI) adsorption in aqueous solution: thermodynamics, kinetics and regeneration studies. Int Biodeterior Biodegrad. 2016;114:76–86.
  • Elnajjar E, Al-Zuhair S, Hasan S, et al. Morphology characterization and chemical composition of United Arab Emirates date seeds and their potential for energy production. Energy. 2020;213:118810.
  • Abu-Thabit NY, Judeh AA, Hakeem AS, et al. Isolation and characterization of microcrystalline cellulose from date seeds (phoenix dactylifera L.). Int J Biol Macromol. 2020;155:730–739.
  • Gao P, Zhou Y, Meng F, et al. Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization. Energy. 2016;97:238–245.
  • Kannan S, Gariepy Y, Raghavan GSV. Optimization and characterization of hydrochar derived from shrimp waste. Energy Fuels. 2017;31(4):4068–4077.
  • Zhu Y, Si Y, Wang X, et al. Characterization of hydrochar pellets from hydrothermal carbonization of agricultural residues. Energy Fuels. 2018;32(11):11538–11546.
  • Kang K, Nanda S, Sun G, et al. Microwave-assisted hydrothermal carbonization of corn stalk for solid biofuel production: optimization of process parameters and characterization of hydrochar. Energy. 2019;186:115795.
  • Nobre C, Alves O, Durão L, et al. Characterization of hydrochar and process water from the hydrothermal carbonization of refuse derived fuel. Waste Manag. 2021;120:303–313.
  • Sangare D, Missaoui A, Bostyn S, et al. Modeling of agave salmiana bagasse conversion by hydrothermal carbonization (HTC) for solid fuel combustion using surface response methodology. AIMS Energy. 2020;8(4):538–562.
  • Missaoui A, Bostyn S, Belandria V, et al. Hydrothermal carbonization of dried olive pomace: energy potential and process performances. J Anal Appl Pyrolysis. 2017;128:281–290.
  • Erses Yay AS, Birinci B, Açıkalın S, et al. Hydrothermal carbonization of olive pomace and determining the environmental impacts of post-process products. J Clean Prod. 2021;315:128087.
  • Jain SM, Gupta PK. 2005. Protocol for somatic embryogenesis in woody plants. Dordrecht (Netherlands): Springer.
  • Majourhat K, Jabbar Y, Araneda L, et al. Karyotype characterization of Argania spinosa (L.) Skeel (Sapotaceae). South African J Bot. 2007;73(4):661–663.
  • Filière palmier dattier | Ministère de l’agriculture; [cited 2022 Jul 5]. https://www.agriculture.gov.ma/fr/filiere/palmier-dattier
  • Dhyani V, Bhaskar T. Kinetic analysis of biomass pyrolysis. In: Waste Biorefinery. Elsevier; 2018. p. 39–83.
  • Flynn HJ, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand A Phys Chem. 1966;70A(6):487–523.
  • Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6(24):639–642.
  • Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.
  • Murray P, White J. Kinetics of the thermal dehydration of clays. Part IV. Interpretation of the differential thermal analysis of the clay minerals. Trans Br Ceram Soc. 1955;54:204–238.
  • Çepelioğullar Ö, Haykırı-Açma H, Yaman S. Kinetic modelling of RDF pyrolysis: model-fitting and model-free approaches. Waste Manag. 2016;48:275–284.
  • Pannase AM, Singh RK, Ruj B, et al. Decomposition of polyamide via slow pyrolysis: effect of heating rate and operating temperature on product yield and composition. J Anal Appl Pyrolysis. 2020;151:104886.
  • ASTM E698-18. Standard test method for kinetic parameters for thermally unstable materials using differential scanning calorimetry and the flynn/wall/ozawa method; 2018.
  • Saha D, Sinha A, Pattanayak S, et al. Pyrolysis kinetics and thermodynamic parameters of plastic grocery bag based on thermogravimetric data using iso-conversional methods. Int J Environ Sci Technol. 2022;19(1):391–406.
  • Mumbach GD, Alves JLF, da Silva JCG, et al. Pyrolysis of cocoa shell and its bioenergy potential: evaluating the kinetic triplet, thermodynamic parameters, and evolved gas analysis using TGA-FTIR. Biomass Conv Bioref. 2022;12(3):723–739.,
  • Lapuerta M, Hernández JJ, Rodrı́guez J. Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis. Biomass Bioenergy. 2004;27(4):385–391.
  • Channiwala SA, Parikh PP. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel. 2002;81(8):1051–1063.
  • Puig-Gamero M, Lara-Díaz J, Valverde JL, et al. Synergestic effect in the steam co-gasification of olive pomace, coal and petcoke: thermogravimetric-mass spectrometric analysis. Energy Convers Manag. 2018;159:140–150.,
  • Zbair M, Bottlinger M, Ainassaari K, et al. Hydrothermal carbonization of argan nut shell: functional mesoporous carbon with excellent performance in the adsorption of bisphenol a and diuron. Waste Biomass Valor. 2020;11(4):1565–1584.
  • Rahib Y, Sarh B, Bostyn S, et al. Non-isothermal kinetic analysis of the combustion of argan shell biomass. Mater Today Proc. 2020;24:11–16.
  • Elmay Y, Jeguirim M, Dorge S, et al. Evaluation of date palm residues combustion in fixed bed laboratory reactor: a comparison with sawdust behaviour. Renew Energy. 2014;62:209–215.
  • Nasser RA, Salem MZM, Hiziroglu S, et al. Chemical analysis of different parts of date palm (phoenix dactylifera L.) using ultimate, proximate and thermo-gravimetric techniques for energy production. Energies. 2016;9(5):374.
  • Azzaz AA, Ghimbeu CM, Jellai S, et al. Olive mill by-Products thermochemical conversion via hydrothermal carbonization and slow pyrolysis: detailed comparison between the generated hydrochars and biochars characteristics. Processes. 2022;10(2):231.
  • Volpe M, Fiori L. From olive waste to solid biofuel through hydrothermal carbonisation: the role of temperature and solid load on secondary char formation and hydrochar energy properties. J Anal Appl Pyrolysis. 2017;124:63–72.
  • Sheng C, Azevedo JLT. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy. 2005;28(5):499–507.
  • Yu ZT, Xu X, Hu YC, et al. Unsteady natural convection heat transfer from a heated horizontal circular cylinder to its air-filled coaxial triangular enclosure. Fuel. 2011;90:1128–1132.
  • Nhuchhen DR, Afzal MT. HHV predicting correlations for torrefied biomass using proximate and ultimate analyses. Bioengineering. 2017;4(4):7.
  • Vaz S. Analytical techniques and methods for biomass. Cham, Switzerland: Springer International Publishing; 2016.
  • Gong J, Li J, Xu J, et al. Cellulose sources with various polymorphs. RSC Adv. 2017;7(53):33486–33493.
  • Kaya N, Atagur M, Akyuz O, et al. Fabrication and characterization of olive pomace filled PP composites. Compos B Eng. 2018;150:277–283.
  • Arellano O, Flores M, Guerra J, et al. Hydrothermal carbonization of corncob and characterization of the obtained hydrochar. Chem Eng Trans. 2016;50:235–240.
  • Kubovský I, Kačíková D, Kačík F. Structural changes of oak wood main components caused by thermal modification. Polymers (Basel). 2020;12(2):485.
  • Daou I, El-Kaddadi L, Zegaoui O, et al. Structural, morphological and thermal properties of novel hybrid-microencapsulated phase change materials based on Fe2O3, ZnO and TiO2 nanoparticles for latent heat thermal energy storage applications. J Energy Storage. 2018;17:84–92.
  • Missio AL, Mattos BD, De Cademartori PHG, et al. Thermochemical and physical properties of two fast-growing eucalypt woods subjected to two-step freeze-heat treatments. Thermochim Acta. 2015;615:15–22.
  • Chen H, Ferrari C, Angiuli M, et al. Qualitative and quantitative analysis of wood samples by fourier transform infrared spectroscopy and multivariate analysis. Carbohydr Polym. 2010;82(3):772–778.
  • Liu Z, Zhang FS. Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks. Energy Convers Manag. 2008;49(12):3498–3504.
  • Sim SF, Mohamed M, Mohd Irwan Lu NAL, et al. Computational FTIR with PCA. BioResources. 2012;7(4):5367–5380.
  • Razi MO, Sasmal S. Organosolv pre-treatment of groundnut (Arachis hypogaea) shell and its upshot. Biomass Conv Bioref. 2022;12(11):5221–5228.
  • Aadnan I, Zegaoui O, Daou I, et al. Synthesis and physicochemical characterization of a ZnO-Chitosan hybrid-biocomposite used as an environmentally friendly photocatalyst under UV-A and visible light irradiations. J Environ Chem Eng. 2020;8(5):104260.
  • Le Moigne N, Jardeby K, Navard P. Structural changes and alkaline solubility of wood cellulose fibers after enzymatic peeling treatment. Carbohydr Polym. 2010;79(2):325–332.
  • Bakhattar I, Koukouch A, Chater H, et al. Thermodynamic analysis of batch adsorption isotherms of different types of olive pomace. Heat Mass Transfer. 2022;58(4):613–630.
  • Basu P. Biomass gasification and pyrolysis : practical design and theory. United States: Academic Press; 2010.
  • Park SW, Jang CH. Effects of pyrolysis temperature on changes in fuel characteristics of biomass char. Energy. 2012;39(1):187–195.
  • Ghetti P, Ricca L, Angelini L. Thermal analysis of biomass and corresponding pyrolysis products. Fuel. 1996;75(5):565–573.
  • Haykiri-Acma H, Yaman S. Thermogravimetric investigation on the thermal reactivity of biomass during slow pyrolysis. Int J Green Energy. 2009;6(4):333–342.
  • El-Sayed SA, Mostafa ME. Kinetic parameters determination of biomass pyrolysis fuels using TGA and DTA techniques. Waste Biomass Valor. 2015;6(3):401–415.
  • Vyazovkin S, Burnham AK, Criado JM, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1-2):1–19.
  • Alrawashdeh KAb, Slopiecka K, Alshorman AA, et al. Pyrolytic degradation of olive waste residue (OWR) by TGA: thermal decomposition behavior and kinetic study. J Energy Power Eng. 2017;11:497–510.
  • Mhemed HA, Largeau J-F, Kordoghli S, et al. Kinetic study of lignocellulosic biomasses pyrolysis using thermogravimetric analysis. Int J Biomass Renew. 2020;9:25–41.
  • Zhang S, Pi M, Su Y, et al. Physiochemical properties and pyrolysis behavior evaluations of hydrochar from co-hydrothermal treatment of rice straw and sewage sludge. Biomass Bioenergy. 2020;140:105664.
  • Arenas CN, Navarro MV, Martínez JD. Pyrolysis kinetics of biomass wastes using isoconversional methods and the distributed activation energy model. Bioresour Technol. 2019;288:121485.
  • Yao F, Wu Q, Lei Y, et al. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab. 2008;93(1):90–98.
  • Torres-García E, Ramírez-Verduzco LF, Aburto J. Pyrolytic degradation of peanut shell: activation energy dependence on the conversion. Waste Manag. 2020;106:203–212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.