115
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in conventional and genetically modified macroalgal biomass as substrates in bioethanol production: a review

, , , & ORCID Icon
Pages 1103-1118 | Received 14 Nov 2022, Accepted 20 Apr 2023, Published online: 09 May 2023

References

  • Alfonsin V, Maceiras R, Gutiérrez C. Bioethanol production from industrial algae waste. Waste Manag. 2019;87:791–797.
  • Priyadharsini P, Dawn SS, Arun J. Four stroke diesel engine performance and emission studies of ethanol recovered from Kappaphycus alvarezii reject-solid food waste mixed substrates and its blends. Chemosphere. 2022;291(Pt 1):132689.
  • Packiyadhas P, Shanmuganantham Selvanantham D. Compositional and structural evaluation of Kappaphycus alvarezii rejects and solid food waste blends for bio ethanol production. Energy Sources Part A. 2020;42:1–17.
  • Hafid HS, Rahman NAA, Shah UKM, et al. Feasibility of using kitchen waste as future substrate for bioethanol production: a review. Renewable Sustainable Energy Rev. 2017;74:671–686.
  • Tazikeh S, Zendehboudi S, Ghafoori S, et al. Algal bioenergy production and utilization: technologies, challenges, and prospects. J Environ Chem Eng. 2022;10(3):107863.
  • Sudhakar MP, Jegatheesan A, Poonam C, et al. Biosaccharification and ethanol production from spent seaweed biomass using marine bacteria and yeast. Renew Energy. 2017;105:133–139.
  • Aditiya H, Mahlia T, Chong WT, et al. Second generation bioethanol production: a critical review, Elsevier; 2016. https://www.sciencedirect.com/science/article/pii/S1364032116303434 .
  • Sikarwar VS, Zhao M, Fennell PS, et al. Progress in biofuel production from gasification. Prog Energy Combust Sci. 2017;61:189–248.
  • Ahmad S, Iqbal K, Kothari R, et al. A critical overview of upstream cultivation and downstream processing of algae-based biofuels: opportunity, technological barriers and future perspective. J Biotechnol. 2022;351:74–98.
  • Ayodele BV, Alsaffar MA, Mustapa SI. An overview of integration opportunities for sustainable bioethanol production from first-and second-generation sugar-based feedstocks. J Clean Prod. 2020;245:118857.
  • Chong TY, Cheah SA, Ong CT, et al. Techno-economic evaluation of third-generation bioethanol production utilizing the macroalgae waste: a case study in Malaysia. Energy. 2020;210:118491.
  • Neto JM, Komesu A, da Silva Martins LH, et al. Third generation biofuels: an overview. In: Rai M, Ingle AP, editors. Sustainable Bioenergy. Netherlands: Elsevier; 2019. p. 283–298
  • Uria-Martinez R, Leiby PN, Brown ML. Energy security role of biofuels in evolving liquid fuel markets. Biofuels Bioprod Bioref. 2018;12(5):802–814.
  • Mohapatra S, Ray RC, Ramachandran S. Bioethanol from biorenewable feedstocks: technology, economics, and challenges. In: Ramesh CR, Ramachandran S, editors. Bioethanol production from food crops. MA: Academic press; 2019. p. 3–27.
  • Jeyakumar N, Hoang AT, Nižetić S, et al. Experimental investigation on simultaneous production of bioethanol and biodiesel from macro-algae. Fuel. 2022;329(2022):125362.
  • Sudhakar K, Mamat R, Samykano M, et al. An overview of marine macroalgae as bioresource. Renewable Sustainable Energy Rev. 2018;91:165–179.
  • Li Z, Wang D, Shi Y-C. Effects of nitrogen source on ethanol production in very high gravity fermentation of corn starch. J Taiwan Inst Chem Eng. 2017;70:229–235.
  • Hoang TD, Nghiem N. Recent developments and current status of commercial production of fuel ethanol. Fermentation. 2021;7(4)314.
  • Dahman Y, Syed K, Begum S, et al. Biofuels: their characteristics and analysis. In: Verma D, Fortunati E, Jain S, Zhang X, editors. Biomass, biopolymer-based materials, and bioenergy. United Kingdom: Woodhead publishing company; 2019. p. 277–325.
  • Abdullah B, Muhammad S, Shokravi Z, et al. Fourth generation biofuel: a review on risks and mitigation strategies. Renewable Sustainable Energy Rev. 2019;107:37–50.
  • Hill J, Nelson E, Tilman D, et al. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A. 2006;103(30):11206–11210.
  • Alalwan HA, Alminshid AH, Aljaafari HAS. Promising evolution of biofuel generations. Subject review. Renewable Energy Focus. 2019;28:127–139.
  • Jambo SA, Abdulla R, Azhar SHM, et al. A review on third generation bioethanol feedstock. Renewable Sustainable Energy Rev. 2016;65:756–769.
  • Kraan S. Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob Change. 2013;18(1):27–46.
  • Singh A, Pant D, Korres NE, et al. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol. 2010;101(13):5003–5012.
  • Teixeira JA, Dragone GM, Fernandes BD, et al. Third generation biofuels from microalgae. In: Vilas AM, editor. Current research, technology and education topics in applied microbiology and microbial biotechnology; 2010. p. 1355–1366.
  • Behera S, Singh R, Arora R, et al. Scope of algae as third generation biofuels. Front Bioeng Biotechnol. 2014;2:90.
  • Chowdhury H, Loganathan B, Mustary I, et al. Algae for biofuels: the third generation of feedstock. In: Basile A, Dalena F, editors. Second and third generation of feedstocks. Netherlands:Elsevier; 2019. p. 323–344.
  • Lü J, Sheahan C, Fu P. Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci. 2011;4(7):2451–2466.
  • Mat Aron NS, Khoo KS, Chew KW, et al. Sustainability of the four generations of biofuels–a review. Int J Energy Res. 2020;44(12):9266–9282.
  • Global seaweeds and microalgae production, 1950-2019 WAPI factsheet to facilitate evidence-based policy-making and sector management in aquaculture, 2021 [cited 2023 Apr 3]. http://unohrlls.org/about-sids/country-profiles/
  • Priyadharsini P, Dawn SS. Optimization of fermentation conditions using response surface methodology (RSM) with kinetic studies for the production of bioethanol from rejects of kappaphycus alvarezii and solid food waste. Biomass Convers Biorefin. 2021; 1–19.
  • Dave N, Selvaraj R, Varadavenkatesan T, et al. A critical review on production of bioethanol from macroalgal biomass. Algal Res. 2019;42:101606.
  • John RP, Anisha GS, Nampoothiri KM, et al. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol. 2011;102(1):186–193.
  • Chen J, Bai J, Li H, et al. Prospects for bioethanol production from macroalgae. Tr Ren Energy. 2015;1:185–197.
  • Rudke AR, de Andrade CJ, Ferreira SRS. Kappaphycus alvarezii macroalgae: an unexplored and valuable biomass for green biorefinery conversion. Trends Food Sci Technol. 2020;103: 214–224.
  • Baghel RS, Reddy CRK, Jha B. Characterization of agarophytic seaweeds from the biorefinery context. Bioresour Technol. 2014;159:280–285.
  • Puspawati S, Ainuri M, Nugraha DA, et al. The production of bioethanol fermentation substrate from Eucheuma cottonii seaweed through hydrolysis by cellulose enzyme. Agric Agric Sci Procedia. 2015;3:200–205.
  • Kumar S, Gupta R, Kumar G, et al. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour Technol. 2013;135:150–156.
  • Wang X, Liu X, Wang G. Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation F. J Integr Plant Biol. 2011;53(3):246–252.
  • Obata O, Akunna J, Bockhorn H, et al. Ethanol production from brown seaweed using non-conventional yeasts. Bioethanol. 2016;2(1):134–145.
  • Borines MG, de Leon RL, Cuello JL. Bioethanol production from the macroalgae Sargassum spp. Bioresour Technol. 2013;138:22–29.
  • Jmel MA, Anders N, Ben Yahmed N, et al. Variations in physicochemical properties and bioconversion efficiency of Ulva lactuca polysaccharides after different biomass pretreatment techniques. Appl Biochem Biotechnol. 2018;184(3):777–793.
  • Jmel MA, Ben Messaoud G, Marzouki MN, et al. Physico-chemical characterization and enzymatic functionalization of Enteromorpha sp. cellulose. Carbohydr Polym. 2016;135:274–279.
  • Jang J-S, Cho Y, Jeong G-T, et al. Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst Eng. 2012;35(1-2):11–18.
  • Soliman RM, Younis SA, El-Gendy NS, et al. Batch bioethanol production via the biological and chemical saccharification of some Egyptian marine macroalgae. J Appl Microbiol. 2018;125(2):422–440.
  • Wu F-C, Wu J-Y, Liao Y-J, et al. Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Bioresour Technol. 2014;156:123–131.
  • Yanagisawa M, Nakamura K, Ariga O, et al. Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochem. 2011;46(11):2111–2116.
  • Widyaningrum T, Prastowo I, Parahadi M, et al. Production of bioethanol from the hydrolysate of brown seaweed (Sargassum crassifolium) using a naturally $β$-glucosidase producing yeast Saccharomyces cereviceae JCM 3012. Biosci Biotech Res. 2016;13(3):1333–1340.
  • Masarin F, Cedeno FRP, Chavez EGS, et al. Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process. Biotechnol Biofuels. 2016;9(1):12.
  • Park M-R, Kim S-K, Jeong G-T. Biosugar production from Gracilaria verrucosa with sulfamic acid pretreatment and subsequent enzymatic hydrolysis. Biotechnol Bioproc E. 2018;23(3):302–310.
  • Parab P, Khandeparker R, Amberkar U, et al. Enzymatic saccharification of seaweeds into fermentable sugars by xylanase from marine Bacillus sp. strain BT21. 3 Biotech. 2017;7(5):1–7.
  • Ge L, Wang P, Mou H. Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energy. 2011;36(1):84–89.
  • Hessami MJ, Phang S-M, Salleh A, et al. Evaluation of tropical seaweeds as feedstock for bioethanol production. Int J Environ Sci Technol. 2018;15(5):977–992.
  • Sudhakar MP, Merlyn R, Arunkumar K, et al. Characterization, pretreatment and saccharification of spent seaweed biomass for bioethanol production using baker’s yeast. Biomass Bioenergy. 2016;90:148–154.
  • Yuan Y, Macquarrie DJ. Microwave assisted acid hydrolysis of brown seaweed ascophyllum nodosum for bioethanol production and characterization of alga residue. ACS Sustainable Chem Eng. 2015;3(7):1359–1365.
  • Goh CS, Lee KT. A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renewable Sustainable Energy Rev. 2010;14(2):842–848.
  • Tan IS, Lam MK, Foo HCY, et al. Advances of macroalgae biomass for the third generation of bioethanol production. Chin J Chem Eng. 2020;28(2):502–517.
  • Shukla R, Kumar M, Chakraborty S, et al. Process development for the production of bioethanol from waste algal biomass of Gracilaria verrucosa. Bioresour Technol. 2016;220:584–589.
  • Gengiah K, Moses GLP, Baskar G. Bioethanol production from Codium tomentosum residue. Energy Sources Part A. 2020;:1–10.
  • Khambhaty Y, Mody K, Gandhi MR, et al. Kappaphycus alvarezii as a source of bioethanol. Bioresour Technol. 2012;103(1):180–185.
  • Yang B, Wyman CE. Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Bioref. 2008;2(1):26–40.
  • Tan IS, Lee KT. Comparison of different process strategies for bioethanol production from eucheuma cottonii: an economic study. Bioresour Technol. 2016;199:336–346.
  • Brodeur G, Yau E, Badal K, et al. Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res. 2011;2011:787532.
  • Kumar AK, Sharma S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess. 2017;4(1):7.
  • Ganguly P, Sarkhel R, Das P. The second-and third-generation biofuel technologies: comparative perspectives. In: Dutta S, Hussain CM editor. Sustainable fuel technologies handbook. Netherlands: Elsevier; 2021. p. 29–50.
  • An Y, Zong M, Wu H, et al. Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: biomass fractionation, enzymatic digestion and ionic liquid reuse, Elsevier, n.d. [cited 2022 Aug 26]. https://www.sciencedirect.com/science/article/pii/S0960852415007373
  • Fu D, Mazza G. Aqueous ionic liquid pretreatment of straw, Elsevier (n.d.). [cited 2022 Aug 26]. https://www.sciencedirect.com/science/article/pii/S0960852411005633
  • Sánchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi, Elsevier. 2008.
  • Tayyab M. Bioethanol production from lignocellulosic biomass by environment-friendly pretreatment methods: a review. Appl Ecol Env Res. 2018;16(1):225–249. .
  • Walker GM, Walker RSK. Enhancing yeast alcoholic fermentations. Adv Appl Microbiol. 2018;105:87–129.
  • Kim HM, Wi SG, Jung S, et al. Efficient approach for bioethanol production from red seaweed Gelidium amansii. Bioresour Technol. 2015;175:128–134.
  • Li Y, Cui J, Zhang G, et al. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass. Bioresour Technol. 2016;214:144–149.
  • El Harchi M, Kachkach FZF, El Mtili N. Optimization of thermal acid hydrolysis for bioethanol production from Ulva rigida with yeast Pachysolen tannophilus. South Afr J Botany. 2018;115:161–169.
  • Adams JM, Gallagher JA, Donnison IS. Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol. 2009;21(5):569–574.
  • Lehahn Y, Ingle KN, Golberg A. Global potential of offshore and shallow waters macroalgal biorefineries to provide for food, chemicals and energy: feasibility and sustainability. Algal Res. 2016;17:150–160.
  • Kim N-J, Li H, Jung K, et al. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol. 2011;102(16):7466–7469.
  • Trivedi N, Baghel RS, Bothwell J, et al. An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Sci Rep. 2016;6(1):8.
  • Kostas ET, White DA, Du C, et al. Selection of yeast strains for bioethanol production from UK seaweeds. J Appl Phycol. 2016;28:1427–1441.
  • Yoon MH, Lee YW, Lee CH, et al. Simultaneous production of bio-ethanol and bleached pulp from red algae. Bioresour Technol. 2012;126:198–201.
  • Nunraksa N, Rattanasansri S, Praiboon J, et al. Proximate composition and the production of fermentable sugars, levulinic acid, and HMF from Gracilaria fisheri and Gracilaria tenuistipitata cultivated in earthen ponds. J Appl Phycol. 2019;31(1):683–690.
  • Mansa RF, Chen W-F, Yeo S-J, et al. Fermentation study on macroalgae eucheuma cottonii for bioethanol production via varying acid hydrolysis. In: Pogaku R, Sarbatly RH, editor. Advances in biofuels. Germany: Springer; 2013. p. 219–240.
  • Pasanda O, Abdul A, Kusuma H. Utilization of waste seaweed through pretreatment with liquid hot water method and simultaneous fermentation using Bacteria Clostridium thermocellum. J Mater Environ Sci. 2016;7:2526–2533.
  • Zabed H, Faruq G, Sahu JN, et al. Bioethanol production from fermentable sugar juice, Hindawi.Com. (n.d.). [cited 2022 Aug 26]. https://www.hindawi.com/journals/tswj/2014/957102/.
  • Liu R, Shen F. Impacts of main factors on bioethanol fermentation from stalk juice of sweet sorghum by immobilized Saccharomyces cerevisiae (CICC 1308. Bioresour Technol. 2008;99(4):847–854.
  • Lin Y, Zhang W, Li C, et al. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742, Elsevier. (n.d.). [cited 2022 Aug 26]. https://www.sciencedirect.com/science/article/pii/S0961953412003595
  • Ramachandra TV, Hebbale D. Bioethanol from macroalgae: prospects and challenges. Renewable Sustainable Energy Rev. 2020;117:109479.
  • Özçimen D, İnan B, Biernat K. An overview of bioethanol production from algae. Biofuels-Status Persp. 2015;141–162.
  • Ra CH, Jeong G-T, Shin MK, et al. Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii. Bioresour Technol. 2013;140:421–425.
  • Horn SJ, Aasen IM, Ostgaard K. Production of ethanol from mannitol by Zymobacter palmae. J Ind Microbiol Biotechnol. 2000;24(1):51–57.
  • Hebbale D, Bhargavi R, Ramachandra TV. Saccharification of macroalgal polysaccharides through prioritized cellulase producing bacteria. Heliyon. 2019;5(3):e01372.
  • Trivedi N, Gupta V, Reddy CRK, et al. Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresour Technol. 2013;150:106–112.
  • van der Wal H, Sperber B, Houweling-Tan B, et al. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour Technol. 2013;128:431–437.
  • Hargreaves PI, Barcelos CA, da Costa ACA, et al. Production of ethanol 3G from Kappaphycus alvarezii: evaluation of different process strategies. Bioresour Technol. 2013;134:257–263.
  • Tan IS, Lee KT. Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol. Carbohydr Polym. 2015;124:311–321.
  • Choi WY, Han JG, Lee CG, et al. Bioethanol production from Ulva pertusa Kjellman by high-temperature liquefaction. Chem Biochem Eng Q. 2012;26:15–21.
  • Chiong MC, Chong CT, Ng J-H, et al. Liquid biofuels production and emissions performance in gas turbines: a review. Energy Convers Manag. 2018;173:640–658.
  • Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci. 2012;38(4):449–467.
  • Kumar S, Singh N, Prasad R. Anhydrous ethanol: a renewable source of energy. Renewable Sustainable Energy Rev. 2010;14(7):1830–1844.
  • Ambaye TG, Vaccari M, Bonilla-Petriciolet A, et al. Emerging technologies for biofuel production: a critical review on recent progress, challenges and perspectives. J Environ Manage. 2021;290:112627.
  • Surendhiran D, Sirajunnisa AR. Role of genetic engineering in bioethanol production from algae. In: Ray RC, Ramachandran S, editors. bioethanol production from food crops. Netherlands: Elsevier; 2019. p. 361–381.
  • Godbole V, Pal MK, Gautam P. A critical perspective on the scope of interdisciplinary approaches used in fourth-generation biofuel production. Algal Res. 2021;58:102436.
  • Priyadharsini P, Nirmala N, Dawn S, et al. Genetic improvement of microalgae for enhanced carbon dioxide sequestration and enriched biomass productivity: review on CO2 bio-fixation pathways, Elsevier. (n.d.). [cited 2023 Apr 3]. https://www.sciencedirect.com/science/article/pii/S2211926422001813
  • Brandon AG, Scheller HV. Engineering of bioenergy crops: dominant genetic approaches to improve polysaccharide properties and composition in biomass. Front Plant Sci. 2020;11:282.
  • Hegde K, Chandra N, Sarma SJ, et al. Genetic engineering strategies for enhanced biodiesel production. Mol Biotechnol. 2015;57(7):606–624.
  • Smachetti MES, Cenci MP, Salerno GL, et al. Ethanol and protein production from minimally processed biomass of a genetically-modified cyanobacterium over-accumulating sucrose. Bioresour Technol Rep. 2019;5:230–237.
  • Kirsch F, Luo Q, Lu X, et al. Inactivation of invertase enhances sucrose production in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology (Reading). 2018;164(10):1220–1228.
  • Charrier B, Rolland E, Gupta V, et al. Production of genetically and developmentally modified seaweeds: exploiting the potential of artificial selection techniques. Front Plant Sci. 2015;6:127.
  • Kaeppler SM, Kaeppler HF, Rhee Y. Epigenetic aspects of somaclonal variation in plants. Plant Gene Silencing. 2000;43:59–68.
  • García-Franco A, Godoy P, de la Torre J, et al. United nations sustainability development goals approached from the side of the biological production of fuels. Microb Biotechnol. 2021;14(5):1871–1877.
  • Ocreto J, Chen W, Ubando AT, et al. A critical review on second-and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment, Elsevier. (n.d.). [cited 2022 Sep 11]. https://www.sciencedirect.com/science/article/pii/S1364032121009539
  • Dhande DY, Sinaga N, Dahe KB. Study on combustion, performance and exhaust emissions of bioethanol-gasoline blended spark ignition engine. Heliyon. 2021;7(3):e06380.
  • Banapurmath NR, Tewari PG, Hosmath RS. Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters. Renew Energy. 2008;33(9):1982–1988.
  • Rakopoulos CD, Antonopoulos KA, Rakopoulos DC. Experimental heat release analysis and emissions of a HSDI diesel engine fueled with ethanol-diesel fuel blends. Energy. 2007;32(10):1791–1808.
  • Paul A, Bose PK, Panua RS, et al. An experimental investigation of performance-emission trade off of a CI engine fueled by diesel–compressed natural gas (CNG) combination and diesel–ethanol blends with CNG enrichment. Energy. 2013;55:787–802.
  • Park S, Cha J, Kim H. Effect of early injection strategy on spray atomization and emission reduction characteristics in bioethanol blended diesel fueled engine, Elsevier. (n.d.). [cited 2023 Apr 4]. https://www.sciencedirect.com/science/article/pii/S0360544212000059
  • Ghadiryanfar M, Rosentrater KA, Keyhani A, et al. A review of macroalgae production, with potential applications in biofuels and bioenergy. Renewable Sustainable Energy Rev. 2016;54:473–481.
  • Kern JD, Hise AM, Characklis GW, et al. Using life cycle assessment and techno-economic analysis in a real options framework to inform the design of algal biofuel production facilities. Bioresour Technol. 2017;225:418–428.
  • Swain MR, Singh A, Sharma AK, et al. Bioethanol production from rice-and wheat straw: an overview. Bioethanol Production Food Crops. 2019;213–231.
  • Solarte-Toro JC, Romero-García JM, Martínez-Patiño JC, et al. Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production, Elsevier. (n.d.). [cited 2023 Apr 3]. https://www.sciencedirect.com/science/article/pii/S1364032119301170
  • Keller JB, Plath PB. Financing biotechnology projects. ABAB. 1999;79(1-3):641–648.
  • Rajak RC, Jacob S, Kim BS. A holistic zero waste biorefinery approach for macroalgal biomass utilization: a review. Sci Total Environ. 2020;716:137067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.