110
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Electrodes materials evaluation in plant microbial fuel cells: a comparison of graphite and stainless steels

ORCID Icon, &
Pages 1077-1086 | Received 26 Feb 2023, Accepted 08 May 2023, Published online: 20 May 2023

References

  • Demirbas A. Progress and recent trends in biodiesel fuels. Energy Convers Manage. 2009;50(1):14–34.
  • Timmers RA, Rothballer M, Strik DPBTB, et al. Microbial community structure elucidates performance. Appl Microbiol Biotechnol. 2012;94(2):537–548.
  • Pimentel D, Marklein A, Toth MA, et al. Food versus biofuels: environmental and economic costs. Hum Ecol. 2009;37(1):1–12.
  • Strik DP, Hamelers HVM, Snel JF, et al. Green electricity production with living plants and bacteria in a fuel cell. Int J Energy Res. 2008;32(9):870–876.
  • Timmers RA, Strik DP, Hamelers HV, et al. Long-term performance of a plant microbial fuel cell with Spartina anglica. Appl Microbiol Biotechnol. 2010;86(3):973–981.
  • Wetser K, Sudirjo E, Buisman CJ, et al. Electricity generation by a plant microbial fuel cell with an integrated. Appl Energy. 2015;137:151–157.
  • Sathish-Kumar K, Vignesh V, Caballero-Briones F. 2017. Sustainable power production from plant-mediated. In: Sustainable agriculture towards food security. p. 85–107.
  • Yahya NFAKND, Ibrahim N. Green electricity production by epipremnum aureum and bacteria in plant microbial fuel cell. J Adv Res Appl Sci Eng Technol. 2016;1:22–31.
  • Guadarrama-Pérez O, Moeller-Chávez GE, Bustos-Terrones V, et al. Identification of sugars as root exudates of the macrophyte species juncus effusus and philodendron cordatum in constructed wetland-microbial fuel cells during bioelectricity production. Environ Technol. 2022:1–15.
  • Sudirjo E, Buisman CJN, Strik DPBTB. Electricity generation from wetlands with activated carbon bioanode. s.l. IOP Conf Ser: Earth Environ Sci. 2018;131(1):012046.
  • Schamphelaire LD, Bossche L. V D, Dang HS, et al. Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ Sci Technol. 2008;42(8):3053–3058.
  • Yan X, Lee HS, Li N, Wang X. The micro-niche of exoelectrogens influences bioelectricity generation in bioelectrochemical systems. Renewable Sustainable Energy Rev. 2020;134:110184.
  • Tou I, Azri Y, Sadi M, et al. Chlorophytum rhizosphere, a suitable environment for electroactive biofilm development. Biomass Conv Bioref. 2021;11(6):2457–2469.
  • Tao M, Kong Y, Jing Z, et al. Denitrification performance, bioelectricity generation and microbial response in microbial fuel cell–constructed wetland treating carbon constraint wastewater. Bioresour Technol. 2022;363:127902.
  • Kiran Kumar V, Man Mohan K, & Manangath SP, et al. Resource recovery from paddy field using plant microbial fuel cell. Process Biochem. 2020;99:270–281., Volume
  • Kuleshovа TE, Ivanova AG, Galushko AS, et al. Influence of the electrode systems parameters on the electricity generation and the possibility of hydrogen production in a plant-microbial fuel cell. Int J Hydrogen Energy. 2022;47(58):24297–24309.
  • Jadhav D, Mungray A, Arkatkar A, et al. Recent advancement in scaling-up applications of microbial fuel cells: from reality to practicability. Sustain Energy Technol. 2021;45:101226. Volume
  • Maddalwar S, Nayak KK, Kumar M, &, et al. Plant microbial fuel cell: opportunities, challenges, and prospects. Bioresour Technol. 2021;341:125772.
  • Behera M, Jana P, More T, et al. Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH. Bioelectrochemistry. 2010;79(2):228–233.
  • Helder M, Chen W-S, van der Harst EJM, et al. Electricity production with living plants on a green roof: environmental. Biofuels Bioprod Bioref. 2013;7(1):52–64.
  • Cheng S, Logan B. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun. 2007;9(3):492–496.
  • Gutarowska B, Michalski A. Microbial degradation of woven fabrics and protection against biodegradation. IntechOpen; Vol. 10; 2012.
  • Chakraborty I, Sathe SM, Dubey BK, et al. Waste-derived biochar: applications and future perspective in microbial fuel cells. Bioresour Technol. 2020;312:123587.
  • Ci S, Wen Z, Chen J, et al. Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells. Electrochem Commun. 2012;14(1):71–74.
  • Zhu N, Chen X, Zhang T, Wu P, Li P, Wu J. Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes. Bioresour Technol. 2011;102(1):422–426.
  • Wei J, Liang P, Huang X. Recent progress in electrodes for microbial fuel cells. Bioresour Technol. 2011;102(20):9335–9344.
  • Helder M, Strik DPBTB, Hamelers HVM, et al. Concurrent bio-electricity and biomass production in three Plant-Microbial fuel cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresour Technol. 2010;101(10):3541–3547.
  • Flexer V, Mano N. From dynamic measurements of photosynthesis in a living plant to sunlight transformation into electricity. Anal Chem. 2010;82(4):1444–1449.
  • Mohan SV, Mohanakrishna G, Chiranjeevi P. Sustainable power generation from floating macrophytes based ecological microenvironment through embedded fuel cells along with simultaneous wastewater treatment. Bioresour Technol. 2011;102(14):7036–7042.
  • Azri YM, Tou I, Sadi M, et al. Bioelectricity generation from three ornamental plants: chlorophytum comosum, chasmanthe floribunda and papyrus diffusus. Int J Green Energy. 2018;15(4):254–263.
  • Klaisongkram N, Holasut K. Electricity generation of plant microbial fuel cell (PMFC) using cyperus involucratus R. Eng Appl Sci Res. 2015;42(1):117–124.
  • Arends JBA, Speeckaert J, Blondeel E, et al. Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell. Appl Microbiol Biotechnol. 2014;98(7):3205–3217.
  • Oon Y-L, Ong S-A, Ho L-N, et al. Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation. Bioresour Technol. 2015;186:270–275. Volume
  • Habibul N, Hu Y, Wang Y-K, et al. Bioelectrochemical chromium (VI) removal in plant-microbial fuel cells. Environ Sci Technol. 2016;50(7):3882–3889.
  • Bombelli P, Iyer DMR, Covshoff S, et al. Comparison of power output by rice (Oryza sativa) and an associated weed (Echinochloa glabrescens) in vascular plant bio-photovoltaic (VP-BPV) systems. Appl Microbiol Biotechnol. 2013;97(1):429–438.
  • Sophia AC, Sreeja S. Green energy generation from plant microbial fuel cells (PMFC) using compost and a novel clay separator. Sustainable Energy Technol Assess. 2017;21:59–66.
  • Sarma P, Mohanty K. Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bio-electricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode. J Biosci Bioeng. 2018;126(3):404–410.
  • Shaikh R, Rizvi A, Quraishi M, et al. Bioelectricity production using plant-microbial fuel cell: present state of art. S Afr J Bot. 2021;140:393–408.
  • Guan CY, Hu A, Yu CP. Stratified chemical and microbial characteristics between anode and cathode after long-term operation of plant microbial fuel cells for remediation of metal contaminated soils. Sci Total Environ. 2019;670:585–594.
  • Arends JB, Speeckaert J, Blondeel E, et al. (2014). Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell. Appl Microbiol Biotechnol. 2014;98:3205–3217.
  • Hindatu Y, Annuar MSM, Gumel AM. Mini-review: anode modification for improved performance of microbial fuel cell. Renewable Sustainable Energy Rev. 2017;73:236–248.
  • Chou H-T, Lee H-J, Lee C-Y, et al. Highly durable anodes of microbial fuel cells using a reduced graphene oxide/carbon nanotube-coated scaffold. Bioresour Technol. 2014;169:532–536. Volume
  • Zhu Y, Ji J, Ren J, Yao C, Ge L. Conductive multilayered polyelectrolyte films improved performance in microbial fuel cells (MFCs). Colloids Surf A: Physicochem Eng Asp. 2014;455:92–96.
  • Kabutey FT, Zhao Q, Wei L, et al. An overview of plant microbial fuel cells (PMFCs): configurations and applications. Renewable Sustainable Energy Rev. 2019;110:402–414. Volume
  • Rusyn IB, Medvediev OV, Valko BT. Enhancement of bioelectric parameters of multi-electrode plant–microbial fuel cells by combining of serial and parallel connection. Int J Environ Sci Technol. 2021;18(6):1323–1334.
  • Papillon J, Onde O, Maire É. Scale up of single-chamber microbial fuel cells with stainless steel 3D anode: effect of electrode surface areas and electrode spacing. Bioresour Technol Rep. 2021;13:100632.
  • Pocaznoi D, Calmet A, Etcheverry L, et al. Stainless steel is a promising electrode material for anodes of microbial fuel cells. Energy Environ Sci. 2012;5(11):9645–9652.
  • Liu S, Song H, Li X, et al. Power generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system. Int J Photoenergy. 2013;2013:1–10.
  • Pamintuan KRS, Sanchez KM. Power generation in a plant-microbial fuel cell assembly with graphite and stainless steel electrodes growing Vigna radiata. s.l., s.n. IOP Conf Ser: mater Sci Eng. 2019;703(1):012037.
  • Hernández-Apaolaza L, Gascó AM, Gascó JM, et al. Reuse of waste materials as growing media for ornamental plants. Bioresour Technol. 2005;96(1):125–131.
  • Wang Y, Tao J, Dai J. Lead tolerance and detoxification mechanism of chlorophytum comosum. Afr J Biotechnol. 2011;10(65):14516–14521.
  • Logan BE, Regan JM. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 2006;14(12):512–518.
  • Surajbhan S, Sreekrishnan T. Effect of salt concentration and mediators in salt bridge microbial fuel cell for electricity generation from synthetic wastewater. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2012;47(6):878–886.
  • Salvin P, Roos C, Robert F. Tropical mangrove sediments as a natural inoculum for efficient electroactive biofilms. Bioresour Technol. 2012;120:45–51.
  • Deng H, Chen Z, Zhao F. Energy from plants and microorganisms: progress in plant–microbial fuel cells. ChemSusChem. 2012;5(6):1006–1011.
  • Tou I, Azri YM, Sadi M, et al. Chlorophytum microbial fuel cell characterization. Int J Green Energy. 2019;16(12):947–959.
  • O'Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol. 2000;54(1):49–79.
  • Toutain CM, Caiazza NC, O'Toole GA. Molecular basis of biofilm development by pseudomonads. s.l.:s.n.; 2004:43–63.
  • Logan BE. 2008. Microbial fuel cells. USA: John Wiley & Son.
  • Wang J, Song X, Wang Y, et al. Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell. Bioresour Technol. 2016;221:697–702.
  • Pham TH, Boon N, Aelterman P, et al. Metabolites produced by Pseudomonas sp. enable a gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol. 2008;77(5):1119–1129.
  • Dumas C, Mollica A, Féron D, et al. Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials. Electrochim Acta. 2007;53(2):468–473.
  • Moqsud MA, Yoshitake J, Bushra QS, et al. Compost in plant microbial fuel cell for bioelectricity generation. Waste Manag. 2015;36:63–69. Volume
  • Moqsud MA, Omine K, Yasufuku N, et al. Bioelectricity from kitchen and bamboo waste in a microbial fuel cell. Waste Manag Res. 2014;32(2):124–130.
  • Pierret A, Doussan C, Capowiez Y, et al. Root functional architecture: a framework for modeling the interplay between roots and soil. Vadose Zone J. 2007;6(2):269–281.
  • L'hostis V, Dagbert C, Féron D. Electrochemical behavior of metallic materials used in seawater—interactions between glucose oxidase and passive layers. Electrochim Acta. 2003;48(10):1451–1458.
  • Pons L, Délia ML, Basséguy R, et al. Effect of the semi-conductive properties of the passive layer on the current provided by stainless steel microbial cathodes. Electrochim Acta. 2011;56(6):2682–2688.
  • Chen L, Li Y, Yao J, et al. Fast expansion of graphite into superior three-dimensional anode for microbial fuel cells. J Power Sources. 2019;412:86–92.
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–1322.
  • Kim BH, Park HS, Kim HJ, et al. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol. 2004;63(6):672–681. Volume
  • Rovira AD. Root excretions in relation to the rhizosphere effect: IV. Influence of plant species, age of plant, light, temperature, and calcium nutrition on exudation. Plant and soil.1959;11:53–64.
  • Kaku N, Yonezawa N, Kodama Y, et al. Plant/microbe cooperation for electricity generation in a rice paddy field. Appl Microbiol Biotechnol. 2008;79(1):43–49. Volume
  • Bakterij AJMT. An overview of the influence of stainless-steel surface properties on bacterial adhesion. Mater Tehnol. 2014;48:609–617.
  • Wijesinghe TSL, Blackwood DJ. Characterisation of passive films on 300 series stainless steels. Appl Surf Sci. 2006;253(2):1006–1009.
  • Abbas AA, Farrag HH, El-Sawy E, &, et al. Microbial fuel cells with enhanced bacterial catalytic activity and stability using 3D nanoporous stainless steel anode. J Cleaner Prod. 2021;285:124816.
  • Beech IB. Corrosion of technical materials in the presence of biofilms—current understanding and state-of-the art methods of study. Int Biodeterior Biodegrad. 2004;53(3):177–183.
  • Peng X, Chen S, Liu L, et al. Modified stainless steel for high performance and stable anode in microbial fuel cells. Electrochim Acta. 2016;194:246–252.
  • Sonawane JM, Patil SA, Ghosh PC, et al. Low-cost stainless-steel wool anodes modified with polyaniline and polypyrrole for high-performance microbial fuel cells. J Power Sources. 2018;379:103–114.
  • Pu K-B, Ma Q, Cai W-F, et al. Polypyrrole modified stainless steel as high performance anode of microbial fuel cell. Biochem Eng J. 2018;132:255–261. Volume
  • Yamashita T, Ishida M, Asakawa S, et al. Enhanced electrical power generation using flame-oxidized stainless steel anode in microbial fuel cells and the anodic community structure. Biotechnol Biofuels. 2016;9(1):1–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.