103
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Equivalent circuits studied by means of electrochemical tests employing different inoculum and simultaneous treatment during bioelectricity production in a single chamber-microbial fuel cell

, , & ORCID Icon
Pages 17-24 | Received 01 Mar 2023, Accepted 15 May 2023, Published online: 23 May 2023

References

  • Narimisa MR, Narimisa MR. Climate change and global warming overview; assessing climate change and global warming in local scale. Rev Publicando. 2018;5(14):570–580.
  • Olivier JG, Schure KM, Peters JA. Trends in global CO2 and total greenhouse gas emissions. PBL Neth Environ Assess Agency. 2017;5:1–11.
  • Akpor OB, Otohinoyi DA, Olaolu DT, et al. Pollutants in wastewater effluents: impacts and remediation processes. Int J Environ Res Earth Sci. 2014;3(3):50–59.
  • Logan BE, Rossi R, Ragab A, et al. Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microbiol. 2019;17(5):307–319.
  • Palanisamy G, Jung HY, Sadhasivam T, et al. A comprehensive review on microbial fuel cell technologies: processes, utilization, and advanced developments in electrodes and membranes. J Clean Prod. 2019;221:598–621.
  • Kim JR, Min B, Logan BE. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol. 2005;68(1):23–30.
  • Liang P, Duan R, Jiang Y, et al. One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Res. 2018;141:1–8.
  • Du TA. Exporting electrons. Nat Rev Microbiol. 2018;16:657.
  • Sciarria TP, Arioli S, Gargari G, et al. Monitoring microbial communities dynamics during the start-up of microbial fuel cells by high-throughput screening techniques. Biotechnol Rep. 2019;21:310.
  • Das I, Das S, Ghangrekar MM. Application of bimetallic low-cost CuZn as oxygen reduction cathode catalyst in lab-scale and field-scale microbial fuel cell. Chem Phys Lett. 2020;751:137536.
  • Logan BE, Hamelers B, Rozendal R, et al. Microbial fuel cells: methodology and technology. Environ Sci Technol. 2006;40(17):5181–5192.
  • Rossi R, Hall DM, Wang X, et al. Quantifying the factors limiting performance and rates in microbial fuel cells using the electrode potential slope analysis combined with electrical impedance spectroscopy. Electrochim Acta. 2020;348:136330.
  • Yu B, Feng L, He Y, et al. Effects of anode materials on the performance and anode microbial community of soil microbial fuel cell. J Hazard Mater. 2021;401:123394.
  • Bhowmick GD, Das S, Adhikary K, et al. Using rhodium as a cathode catalyst for enhancing performance of microbial fuel cell. Int J Hydrog Energy. 2019;44(39):22218–22222.
  • Estrada-Arriaga EB, Hernández-Romano J, García-Sánchez L, et al. Domestic wastewater treatment and power generation in continuous flow air-cathode stacked microbial fuel cell: effect of series and parallel configuration. J Environ Manage. 2018;214:232–241.
  • Rossi R, Logan BE. Unraveling the contributions of internal resistance components in two-chamber microbial fuel cells using the electrode potential slope analysis. Electrochim Acta. 2020;348:136291.
  • Javed MM, Nisar MA, Ahmad MU. Effect of NaCl and pH on bioelectricity production from vegetable waste extract supplemented with cane molasses in dual chamber microbial fuel cell. J Zool. 2021;54(1):247–254.
  • Rossi R, Cario BP, Santoro C, et al. Evaluation of electrode and solution area-based resistances enables quantitative comparisons of factors impacting microbial fuel cell performance. Environ Sci Technol. 2019;53(7):3977–3986.
  • Li S, Cheng C, Thomas A. Carbon‐based microbial‐fuel‐cell electrodes: from conductive supports to active catalysts. Adv. Mater. 2017;29(8):1602547.
  • Estrada-Arriaga EB, Guadarrama-Pérez O, Silva-Martínez S, et al. Oxygen reduction reaction (ORR) electrocatalysts in constructed wetland-microbial fuel cells: effect of different carbon-based catalyst biocathode during bioelectricity production. Electrochim Acta. 2021;370:137745.
  • Frattini D, Accardo G, Kwon Y. Perovskite ceramic membrane separator with improved biofouling resistance for yeast-based microbial fuel cells. J Membr Sci. 2020;599:117843.
  • Lu Y, Jia J, Miao H, et al. Performance improvement and biofouling mitigation in osmotic microbial fuel cells via in situ formation of silver nanoparticles on forward osmosis membrane. Membranes. 2020;10(6):122. [ Mismatch]
  • Xu G, Zheng X, Lu Y, et al. Development of microbial community within the cathodic biofilm of single-chamber air-cathode microbial fuel cell. Sci Total Environ. 2019;665:641–648.
  • Liu P, Liang P, Jiang Y, et al. Stimulated electron transfer inside electroactive biofilm by magnetite for increased performance microbial fuel cell. Appl Energy. 2018;216:382–388.
  • Liu X, Walker DJ, Nonnenmann SS, et al. Direct observation of electrically conductive pili emanating from Geobacter sulfurreducens. Mbio. 2021;12(4):2209–2221.
  • Bond DR, Lovley DR. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol. 2003;69(3):1548–1555.
  • Ringeisen BR, Henderson E, Wu PK, et al. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol. 2006;40(8):2629–2634.
  • Yong XY, Yan ZY, Shen HB, et al. An integrated aerobic-anaerobic strategy for performance enhancement of Pseudomonas aeruginosa-inoculated microbial fuel cell. Bioresour Technol. 2017;241:1191–1196.
  • Wang C, Jiang H. Real-time monitoring of sediment bulking through a multi-anode sediment microbial fuel cell as reliable biosensor. Sci Total Environ. 2019;697:134009.
  • Guadarrama‐Pérez O, Hernández‐Romano J, García‐Sánchez L, et al. Simultaneous bio‐electricity and bio‐hydrogen production in a continuous flow single microbial electrochemical reactor. Environ Prog Sustain Energy. 2019;38(1):297–304.
  • Cao Y, Mu H, Liu W, et al. Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microb Cell Fact. 2019;18(1):1–14.
  • Sindhuja M, Sudha V, Harinipriya S. Insights on the resistance, capacitance and bioelectricity generation of microbial fuel cells by electrochemical impedance studies. Int J Hydrog Energy. 2019;44(11):5428–5436.
  • Khan N, Anwer AH, Ahmad A, et al. Investigating microbial fuel cell aided bio-remediation of mixed phenolic contaminants under oxic and anoxic environments. Biochem Eng J. 2020;155:107485.
  • Sindhuja M, Kumar NS, Sudha V, et al. Equivalent circuit modeling of microbial fuel cells using impedance spectroscopy. J Energy Storage. 2016;7:136–146.
  • Yousefi V, Mohebbi-Kalhori D, Samimi A. Equivalent electrical circuit modeling of ceramic-based microbial fuel cells using the electrochemical impedance spectroscopy (EIS) analysis. J Renew Sustain Energy. 2019;6(1):21–28.
  • Chen GW, Choi SJ, Lee TH, et al. Application of biocathode in microbial fuel cells: cell performance and microbial community. Appl Microbiol Biotechnol. 2008;79(3):379–388.
  • Zhang X, Cheng S, Huang X, et al. The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells. Energy Environ. Sci. 2010;3(5):659–664.
  • Kim B, Chang IS, Dinsdale RM, et al. Accurate measurement of internal resistance in microbial fuel cells by improved scanning electrochemical impedance spectroscopy. Electrochim Acta. 2021;366:137388.
  • Kandpal R, Nara S, Shahadat M, et al. Impedance spectroscopic study of biofilm formation on pencil lead graphite anode in microbial fuel cell. J Taiwan Inst Chem Eng. 2021;128:114–123.
  • Adekunle A, Gomez-Vidales A, Woodward L, et al. Microbial fuel cell soft sensor for real-time toxicity detection and monitoring. Environ Sci Pollut Res Int. 2021;28(10):12792–12802.
  • Salar-Garcia MJ, Obata O, Kurt H, et al. Impact of inoculum type on the microbial community and power performance of urine-fed microbial fuel cells. Microorganisms. 2020;8(12):1921.
  • Baniasadi B, Vahabzadeh F. The performance of a cyanobacterial biomass-based microbial fuel cell (MFC) inoculated with Shewanella oneidensis MR-1. J Environ Chem Eng. 2021;9(6):106338.
  • Jadhav DA, Ghangrekar MM. Optimizing the proportion of pure and mixed culture in inoculum to enhance the performance of microbial fuel cells. IJETM. 2020;23(1):50–67.
  • Beutler M, Wiltshire KH, Meyer B, et al. (2005), Standard methods for the examination of water and wastewater, Washington DC: American Public Health Association; Ahmad, SR, and DM Reynolds (1999), Monitoring of water quality using fluorescence technique: prospect of on-line process control. Water Research, 33 (9), 2069–2074; Arar, EJ and GB Collins (1997), In vitro determination of chlorophyll a and pheophytin A in dissolved oxygen dynamics and modeling—A Case Study in A Subtropical Shallow Lake. 2014;217:95.
  • Tsai HY, Hsu WH, Huang YC. Characterization of carbon nanotube/graphene on carbon cloth as an electrode for air-cathode microbial fuel cells. J Nanomater. 2015;2015(3):1–7.
  • Lamp JL, Guest JS, Naha S, et al. Flame synthesis of carbon nanostructures on stainless steel anodes for use in microbial fuel cells. J Power Sources. 2011;196(14):5829–5834.
  • Zhao N, Treu L, Angelidaki I, et al. Exoelectrogenic anaerobic granular sludge for simultaneous electricity generation and wastewater treatment. Environ Sci Technol. 2019;53(20):12130–12140.
  • Deng Q, Su C, Lu X, et al. Performance and functional microbial communities of denitrification process of a novel MFC-granular sludge coupling system. Bioresour Technol. 2020;306:123173.
  • Zhao N, Su Y, Angelidaki I, et al. Electrochemical capacitive performance of intact anaerobic granular sludge-based 3D bioanode. J Power Sources. 2020;470:228399.
  • Shu C, Zhu Q, Xiao K, et al. Direct extracellular electron transfer of the Geobacter sulfurreducens pili relevant to interaromatic distances. Biomed Res Int. 2019;2019:6151587.
  • Gorby YA, Yanina S, McLean JS, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA. 2006;103(30):11358–11363.
  • Logan BE, Liu H. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol. 2004;38(14):4040–4046.
  • Gunaseelan K, Jadhav DA, Gajalakshmi S, et al. Blending of microbial inocula: an effective strategy for performance enhancement of clayware biophotovoltaics microbial fuel cells. Bioresour Technol. 2021;323:124564.
  • González-Gamboa N, Domínguez-Benetton X, Pacheco-Catalán D, et al. Effect of operating parameters on the performance evaluation of benthic microbial fuel cells using sediments from the Bay of Campeche, Mexico. Sustainability. 2018;10(7):2446.
  • Negassa LW, Mohiuddin M, Tiruye GA. Treatment of brewery industrial wastewater and generation of sustainable bioelectricity by microbial fuel cell inoculated with locally isolated microorganisms. J Water Process Eng. 2021;41:102018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.