236
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Chemical pretreatment of corncob for the selective dissolution of hemicellulose and lignin: influence of pretreatment on the chemical, morphological and thermal features

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 89-103 | Received 28 Feb 2023, Accepted 25 May 2023, Published online: 08 Jun 2023

References

  • Ho DP, Ngo HH, Guo W. A mini review on renewable sources for biofuel. Bioresour. Technol. 2014;169:742–749.
  • Bentsen NS, Felby C, Thorsen BJ. Agricultural residue production and potentials for energy and materials services. Prog. Energy Combust. Sci. 2014;40:59–73.
  • Duque-Acevedo M, Belmonte-Ureña LJ, Cortés-García FJ, et al. Agricultural waste: review of the evolution, approaches and perspectives on alternative uses. Glob. Ecol. Conserv. 2020;22:e00902.
  • Velvizhi G, Balakumar K, Shetti NP, et al. Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: paving a path towards circular economy. Bioresour. Technol. 2022;343:126151.
  • FAO. World food and agriculture – statistical yearbook 2021. Rome: Food and Agriculture Organization of United Nations, 2021.
  • FAO. Comparate data, n.d. [cited 2022 Nov 27]. http://www.fao.org/faostat/en/#compare.
  • Saini JK, Saini R, Tewari L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech. 2015;5(4):337–353.
  • Hendriks ATWM, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 2009;100(1):10–18.
  • Hoang AT, Nizetic S, Ong HC, et al. Acid-based lignocellulosic biomass biorefinery for bioenergy production: advantages, application constraints, and perspectives. J. Environ. Manage. 2021;296:113194.
  • Solarte-Toro JC, Romero-García JM, Martínez-Patiño JC, et al. Acid pretreatment of lignocellulosic biomass for energy vectors production: a review focused on operational conditions and techno-economic assessment for bioethanol production. Renew. Sustain. Energy Rev. 2019;107:587–601.
  • Jönsson LJ, Martín C. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 2016;199:103–112.
  • Mankar AR, Pandey A, Modak A, et al. Pretreatment of lignocellulosic biomass: a review on recent advances. Bioresour. Technol. 2021;334:125235.
  • Yoo CG, Meng X, Pu Y, et al. The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: a comprehensive review. Bioresour. Technol. 2020;301:122784.
  • Lorenci Woiciechowski A, Dalmas Neto CJ, Porto de Souza Vandenberghe L, et al. Lignocellulosic biomass: acid and alkaline pretreatments and their effects on biomass recalcitrance – conventional processing and recent advances. Bioresour. Technol. 2020;304:122848.
  • Gandam PK, Chinta ML, Pabbathi NPP, et al. Second-generation bioethanol production from corncob – a comprehensive review on pretreatment and bioconversion strategies, including techno-economic and lifecycle perspective. Ind. Crops Prod. 2022;186:115245.
  • Liu K, Lin X, Yue J, et al. High concentration ethanol production from corncob residues by fed-batch strategy. Bioresour. Technol. 2010;101(13):4952–4958.
  • Sewsynker-Sukai Y, Gueguim Kana EB. Simultaneous saccharification and bioethanol production from corn cobs: process optimization and kinetic studies. Bioresour. Technol. 2018;262:32–41.
  • Van Eylen D, van Dongen F, Kabel M, et al. Corn fiber, cobs and stover: enzyme-aided saccharification and co-fermentation after dilute acid pretreatment. Bioresour. Technol. 2011;102(10):5995–6004.
  • Khan MFS, Akbar M, Xu Z, et al. A review on the role of pretreatment technologies in the hydrolysis of lignocellulosic biomass of corn stover. Biomass Bioenergy. 2021;155:106276.
  • Zheng A, Zhao K, Li L, et al. Quantitative comparison of different chemical pretreatment methods on chemical structure and pyrolysis characteristics of corncobs. J. Energy Inst. 2018;91(5):676–682.
  • Sewsynker-Sukai Y, Suinyuy TN, Kana EBG. Development of a sequential alkalic salt and dilute acid pretreatment for enhanced sugar recovery from corn cobs. Energy Convers. Manag. 2018;160:22–30.
  • Baadhe RR, Potumarthi R, Mekala NK. Influence of dilute acid and alkali pretreatment on reducing sugar production from corncobs by crude enzymatic method: a comparative study. Bioresour. Technol. 2014;162:213–217.
  • Cesar C, Capetti DM, Oliveira V, et al. Enzymatic production of xylooligosaccharides from corn cobs: assessment of two different pretreatment strategies. Carbohydr. Polym. 2023;299:120174.
  • Li Q, Gao Y, Wang H, et al. Comparison of different alkali-based pretreatments of corn stover for improving enzymatic saccharification. Bioresour. Technol. 2012;125:193–199.
  • Yu Q, Zhu Y, Bian S, et al. Structural characteristics of corncob and eucalyptus contributed to sugar release during hydrothermal pretreatment and enzymatic hydrolysis. Cellulose. 2017;24(11):4899–4909.
  • Li J, Zhang H, Lu M, et al. Comparison and intrinsic correlation analysis based on composition, microstructure and enzymatic hydrolysis of corn stover after different types of pretreatments. Bioresour. Technol. 2019;293:122016.
  • Boonsombuti A, Luengnaruemitchai A, Wongkasemjit S. Enhancement of enzymatic hydrolysis of corncob by microwave-assisted alkali pretreatment and its effect in morphology. Cellulose. 2013;20(4):1957–1966.
  • Sahare P, Singh R, Laxman RS, et al. Effect of alkali pretreatment on the structural properties and enzymatic hydrolysis of corn cob. Appl. Biochem. Biotechnol. 2012;168(7):1806–1819.
  • Estrada AR, Cervantes VYM, Nieto FSM, et al. Assessment and classification of lignocellulosic biomass recalcitrance by principal components analysis based on thermogravimetry and infrared spectroscopy. Int. J. Environ. Sci. Technol. 2022;19:2529–2544.
  • Zou Y, Fu J, Chen Z, et al. The effect of microstructure on mechanical properties of corn cob. Micron. 2021;146:103070.
  • Ji G, Gao C, Xiao W, et al. Mechanical fragmentation of corncob at different plant scales: impact and mechanism on microstructure features and enzymatic hydrolysis. Bioresour. Technol. 2016;205:159–165.
  • Aguilar R, Ramı́rez JA, Garrote G, et al. Kinetic study of the acid hydrolysis of sugar cane bagasse. J. Food Eng. 2002;55(4):309–318.
  • Li P, Cai D, Luo Z, et al. Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production. Bioresour. Technol. 2016;206:86–92.
  • Abidi N, Cabrales L, Haigler CH. Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr. Polym. 2014;100:9–16.
  • Sathawong S, Sridach W, Techato KA. Lignin: isolation and preparing the lignin based hydrogel. J. Environ. Chem. Eng. 2018;6(5):5879–5888.
  • Adel AM, El-Wahab ZHA, Ibrahim AA, et al. Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis. Bioresour. Technol. 2010;101(12):4446–4455.
  • Nagarajan A, Thulasinathan B, Arivalagan P, et al. Particle size influence on the composition of sugars in corncob hemicellulose hydrolysate for xylose fermentation by meyerozyma caribbica. Bioresour. Technol. 2021;340:125677.
  • Ditzel FI, Prestes E, Carvalho BM, et al. Nanocrystalline cellulose extracted from pine wood and corncob. Carbohydr. Polym. 2017;157:1577–1585.
  • Chung C, Lee M, Choe EK. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr. Polym. 2004;58(4):417–420.
  • Xu F, Yu J, Tesso T, et al. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques : a mini review. Appl. Energy. 2013;104:801–809.
  • Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12–13):1781–1788.
  • Yu J, Paterson N, Blamey J, et al. Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel. 2017;191:140–149.
  • Yang H, Yan R, Chen H, et al. In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin. Ind. Eng. Chem. Res. 2011;50:10424–10433.
  • Zhao S, Liu M, Zhao L, et al. Influence of interactions among three biomass components on the pyrolysis behavior. Ind. Eng. Chem. Res. 2018;57(15):5241–5249.
  • Wang S, Guo X, Wang K, et al. Influence of the interaction of components on the pyrolysis behavior of biomass. J. Anal. Appl. Pyrolysis. 2011;91(1):183–189.
  • Nhuchhen DR, Abdul Salam P. Estimation of higher heating value of biomass from proximate analysis: a new approach. Fuel. 2012;99:55–63.
  • Demirbas A. Calculation of higher heating values of biomass fuels, energy sources, part a recover. Util. Environ. Eff. 2016;38(18):2693–2697.
  • Moura HOMA, Câmara ABF, Campos LMA, et al. Novel methodology for lignocellulose composition, polymorphism and crystallinity analysis via deconvolution of differential thermogravimetry data. J. Polym. Environ. 2023;31(5):1915–1924.
  • Cai BY, Ge JP, Ling HZ, et al. Statistical optimization of dilute sulfuric acid pretreatment of corncob for xylose recovery and ethanol production. Biomass Bioenergy. 2012;36:250–257.
  • Chen Y, Dong B, Qin W, et al. Xylose and cellulose fractionation from corncob with three different strategies and separate fermentation of them to bioethanol. Bioresour. Technol. 2010;101(18):6994–6999.
  • Gupta R, Mehta G, Chander Kuhad R. Fermentation of pentose and hexose sugars from corncob, a low cost feedstock into ethanol. Biomass Bioenergy. 2012;47:334–341.
  • Kim JS, Lee YY, Kim TH. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol. 2016;199:42–48.
  • Zhang M, Wang F, Su R, et al. Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresour Technol. 2010;101(13):4959–4964.
  • Sunkar B, Bhukya B. Bi-phasic hydrolysis of corncobs for the extraction of total sugars and ethanol production using inhibitor resistant and thermotolerant yeast, pichia kudriavzevii. Biomass Bioenergy. 2021;153:106230.
  • Wiercigroch E, Szafraniec E, Czamara K, et al. Raman and infrared spectroscopy of carbohydrates: a review. Spectrochim. Acta A. Mol Biomol. Spectrosc. 2017;185:317–335.
  • Wang Y, Yuan B, Ji Y, et al. Hydrolysis of hemicellulose to produce fermentable monosaccharides by plasma acid. Carbohydr. Polym. 2013;97(2):518–522.
  • Guadix-Montero S, Sankar M. Review on catalytic cleavage of C–C inter-unit linkages in lignin model compounds: towards lignin depolymerisation. Top Catal. 2018;61(3-4):183–198.
  • Sahoo S, Seydibeyoğlu MÖ, Mohanty AK, et al. Characterization of industrial lignins for their utilization in future value added applications. Biomass Bioenergy. 2011;35(10):4230–4237.
  • Park J, Riaz A, Insyani R, et al. Understanding the relationship between the structure and depolymerization behavior of lignin. Fuel. 2018;217:202–210.
  • Dominguez JM, Cao N, Gongh CS, et al. Dilute acid hemicellulose hydrolysates from corn cobs for xylitol production by yeast. Bioresour Technol. 1997;61:85–90.
  • Duque A, Manzanares P, Ballesteros I, et al. Optimization of integrated alkaline-extrusion pretreatment of Barley straw for sugar production by enzymatic hydrolysis. Process Biochem. 2013;48(5–6):775–781.
  • Demirbaş A. Relationships between lignin contents and fixed carbon contents of biomass samples. Energy Convers. Manag. 2003;44(9):1481–1486.
  • Brebu M, Tamminen T, Spiridon I. Thermal degradation of various lignins by TG-MS/FTIR and Py-GC-MS. J. Anal. Appl. Pyrolysis. 2013;104:531–539.
  • Jenkins BM, Baxter LL, Miles TR, Jr, et al. Combustion properties of biomass. 1998.
  • Boonchuay P, Techapun C, Leksawasdi N, et al. An integrated process for xylooligosaccharide and bioethanol production from corncob. Bioresour. Technol. 2018;256:399–407.
  • Carrillo-Nieves D, Rostro Alanís MJ, de la Cruz Quiroz R, et al. Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renew. Sustain. Energy Rev. 2019;102:63–74.
  • Zabed H, Sahu JN, Suely A, et al. Bioethanol production from renewable sources: current perspectives and technological progress. Renew. Sustain. Energy Rev. 2017;71:475–501.
  • MacFarlane DR, Tachikawa N, Forsyth M, et al. Energy applications of ionic liquids. Energy Environ. Sci. 2014;7(1):232–250.
  • Yu H, Guo J, Chen Y, et al. Efficient utilization of hemicellulose and cellulose in alkali liquor-pretreated corncob for bioethanol production at high solid loading by Spathaspora passalidarum U1-58. Bioresour. Technol. 2017;232:168–175.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.