498
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Bioethanol production from sugarcane molasses with supplemented nutrients by industrial yeast

, , , & ORCID Icon
Pages 129-135 | Received 23 Jan 2023, Accepted 01 Jun 2023, Published online: 19 Jun 2023

References

  • Ward OP. Application of baker’s yeast in bioorganic synthesis. Can J Bot. 1995;73(S1):1043–1048. doi:10.1139/b95-355.
  • Pereira RDS. The use of baker’s yeast in the generation of asymmetric centers to produce chiral drugs and other compounds. Crit Rev Biotechnol. 1998;18(1):25–83. doi:10.1080/0738-859891224211.
  • Luong JHT. Kinetics of ethanol inhibition in alcohol fermentation. Biotechnol Bioeng. 1985;27(3):280–285. doi:10.1002/bit.260270311.
  • Maiorella B, Blanch HW, Wilke CR. By‐product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol Bioeng. 1983;25(1):103–121. doi:10.1002/bit.260250109.
  • Ribéreau-Gayon P. New developments in wine microbiology. Am J Enol Vitic. 1985;36(1):1–10. doi:10.5344/ajev.1985.36.1.1.
  • Van Uden N. Ethanol toxicity and ethanol tolerance in yeasts. In Annual reports on fermentation processes. Vol. 8, pp. 11–58. Amsterdam: Elsevier; 1985.
  • Peña A, Sánchez NS, Álvarez H, et al. Effects of high medium pH on growth, metabolism and transport in Saccharomyces cerevisiae. FEMS Yeast Res. 2015;15(2)
  • Alfenore S, Molina-Jouve C, Guillouet SE, et al. Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during the fed-batch process. Appl Microbiol Biotechnol. 2002;60(1–2):67–72. doi:10.1007/s00253-002-1092-7.
  • van Dijk M, Mierke F, Nygård Y, et al. Nutrient-supplemented propagation of Saccharomyces cerevisiae improves its lignocellulose fermentation ability. AMB Expr. 2020;10(1):1–10. doi:10.1186/s13568-020-01070-y.
  • Carioca JOB, Leal MRLV. 2011). Ethanol production from sugar-based feedstocks.
  • Huynh P, Sukanya N, Nguyen Tran Cam G, et al. Ethanol production from molasses at high temperature by thermotolerant yeasts isolated from cocoa. CTU J. 2016;03(03):32–37.) doi:10.22144/ctu.jen.2016.021.
  • Lehnen M, Ebert BE, Blank LM. Elevated temperatures do not trigger a conserved metabolic network response among thermotolerant yeasts. BMC Microbiol. 2019;19(1):1–11. doi:10.1186/s12866-019-1453-3.
  • Talukder AA, Easmin F, Mahmud SA, et al. Thermotolerant yeasts capable of producing bioethanol: isolation from natural fermented sources, identification and characterization. Biotechnol Biotechnol Equip. 2016;30(6):1106–1114. doi:10.1080/13102818.2016.1228477.
  • Zaldivar J, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol. 2001;56(1–2):17–34. doi:10.1007/s002530100624.
  • Strehaiano P. Fermentation alcoolique: influence de la concentration en glucose sur le taux de production d‘ethanol et le taux de croissance. 1978.
  • Casey GP, Ingledew WM. Ethanol tolerance in yeasts. Crit Rev Microbiol. 1986;13(3):219–280. doi:10.3109/10408418609108739.
  • Casey GP, Magnus CA, Ingledew WM. High gravity brewing: nutrient-enhanced production of high concentrations of ethanol by brewing yeast. Biotechnol Lett. 1983;5(6):429–434. doi:10.1007/BF00131286.
  • Dombek KM, Ingram LO. Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation. Appl Environ Microbiol. 1986;52(5):975–981. doi:10.1128/aem.52.5.975-981.1986.
  • Leão C, Van Uden N. Effects of ethanol and other alkanols on the general amino acid permease of Saccharomyces cerevisiae. Biotechnol Bioeng. 1984;26(4):403–405. doi:10.1002/bit.260260422.
  • Taherzadeh MJ, Lidén G, Gustafsson L, et al. The effects of pantothenate deficiency and acetate addition on anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 1996;46(2):176–182. doi:10.1007/s002530050801.
  • Vigie P. Contribution à l‘optimisation de la fermentation alcoolique par cultures continues en réacteur Cascade (Doctoral dissertation, Toulouse); 1990.
  • Winter J. Fermentation alcoolique par Saccharomyces cerevisiae: contribution à l‘étude du contrôle de la dynamique fermentaire par l‘inhibition et les facteurs nutritionnels (Doctoral dissertation, ANRT); 1988.
  • Trevelyan WE, Harrison JS. Studies on yeast metabolism. 4. The effect of thiamine on yeast fermentation. Biochem J. 1954;57(4):561–566. doi:10.1042/bj0570561.
  • Chiao JS, Peterson WH. Some factors affecting the inhibitory action of thiamine on the growth of Saccharomyces carlsbergensis. Arch Biochem Biophys. 1956;64(1):115–128. doi:10.1016/0003-9861(56)90248-x.
  • Leonian LH, Lilly VG. The effect of vitamins on ten strains of Saccharomyces cerevisiae. Am J Bot. 1942;29(6):459–464. doi:10.1002/j.1537-2197.1942.tb10235.x.
  • Camiener GW, Brown GM. The biosynthesis of thiamine. 1. Enzymatic formation of thiamine and phosphate esters of the pyrimidine moiety of thiamine. J Biol Chem. 1960;235:2404–2410.
  • Kowalska E, Kozik A. The genes and enzymes involved in the biosynthesis of thiamin and thiamin diphosphate in yeasts. Cell Mol Biol Lett. 2008;13(2):271–282.
  • Wolak N, Kowalska E, Kozik A, et al. Thiamine increases the resistance of baker’s yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes. FEMS Yeast Res. 2014;14(8):1249–1262. doi:10.1111/1567-1364.12218.
  • Bataillon M, Rico A, Sablayrolles JM, et al. Early thiamin assimilation by yeasts under enological conditions: impact on alcoholic fermentation kinetics. J Ferment Bioeng. 1996;82(2):145–150. doi:10.1016/0922-338X(96)85037-9.
  • Muller EH, Richards EJ, Norbeck J, et al. Thiamine repression and pyruvate decarboxylase autoregulation independently control the expression of the Saccharomyces cerevisiae PDC5 gene. FEBS Lett. 1999;449(2–3):245–250. doi:10.1016/s0014-5793(99)00449-4.
  • Park JH, Dorrestein PC, Zhai H, et al. Biosynthesis of the thiazole moiety of thiamin pyrophosphate (vitamin B1). Biochem. 2003;42(42):12430–12438. doi:10.1021/bi034902z.
  • Cooper TG, Benedict CR. The participation of acetyl-CoA in pyruvate carboxylase. Biochem Biophys Res Commun. 1966;22(3):285–290. doi:10.1016/0006-291x(66)90479-7.
  • Hohmann S, Meacock PA. 1998). Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation.
  • Zeidler J, Sayer BG, Spenser ID. Biosynthesis of vitamin B1 in yeast. Derivation of the pyrimidine unit from pyridoxine and histidine. Intermediacy of urocanic acid. J Am Chem Soc. 2003;125(43):13094–13105. doi:10.1021/ja030261j.
  • Baldet P, Ruffet ML. Biotin synthesis in higher plants: isolation of a cDNA encoding Arabidopsis thaliana bioB-gene product equivalent by functional complementation of a biotin auxotroph mutant bioB105 of Escherichia coli K12. Comptes rendus de L'academie des sciences. Serie III. C R Acad Sci III. 1996;319(2):99–106.
  • Ohsugi M, Imanishi Y. Microbiological activity of biotin-vitamers. J Nutr Sci Vitaminol (Tokyo). 1985;31(6):563–572. doi:10.3177/jnsv.31.563.
  • Bower S, Perkins JB, Yocum RR, et al. Cloning, sequencing, and characterization of the Bacillus subtilis biotin biosynthetic operon. J Bacteriol. 1996;178(14):4122–4130. doi:10.1128/jb.178.14.4122-4130.1996.
  • Lee J, Lee SY, Park S. Fed-batch culture of Escherichia coli W by exponential feeding of sucrose as a carbon source. Biotechnol Tech. 1997;11(1):59–62. doi:10.1007/BF02764454.
  • Xin L, Yongfei L, Zuoying D. The effect of different substrate concentration on ethanol fermentation. Food Ferment Indust. 2003;29(7):21–23.
  • Muruaga ML, Carvalho KG, Domínguez JM, et al. Isolation and characterization of Saccharomyces species for bioethanol production from sugarcane molasses: studies of scale up in bioreactor. Renew Eng. 2016;85:649–656. doi:10.1016/j.renene.2015.07.008.
  • Zhang Q, Wu D, Lin Y, et al. Substrate and product inhibition on yeast performance in ethanol fermentation. Energy Fuel. 2015;29(2):1019–1027. doi:10.1021/ef502349v.
  • Lin Y, Zhang W, Li C, et al. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioeng. 2012;47:395–401. doi:10.1016/j.biombioe.2012.09.019.
  • Mensah T, Matilda S, Tagoe A. 2019). Measurement of yeast growth using spectrophotometer. doi:10.13140/RG.2.2.15418.03527.
  • Narendranath NV, Power R. Relationship between pH and medium dissolved solids in terms of growth and metabolism of lactobacilli and Saccharomyces cerevisiae during ethanol production. Appl Environ Microbiol. 2005;71(5):2239–2243. doi:10.1128/AEM.71.5.2239-2243.2005.
  • Azhar SHM, Abdulla R, Jambo SA, et al. Yeasts in sustainable bioethanol production: a review. Biochem Biophys Rep. 2017;10:52–61. doi:10.1016/j.bbrep.2017.03.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.