270
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

The effects of the usage of silicon dioxide (SiO2) and titanium dioxide (TiO2) as nano-sized fuel additives on the engine characteristics in diesel engines: a review

, & ORCID Icon
Pages 229-243 | Received 27 Feb 2023, Accepted 01 Jun 2023, Published online: 08 Jun 2023

References

  • Erickson P, Asselt H, Koplow D, et al. Why fossil fuel producer subsidies matter. Nature. 2020;578(7793):E1–E4. doi:10.1038/s41586-019-1920-x.
  • Holechek JL, Geli HM, Sawalhah MN, et al. A global assessment: can renewable energy replace fossil fuels by 2050? Sustainability. 2022;14(8):4792. doi:10.3390/su14084792.
  • Aliramezani M, Norouzi A, Koch CR, et al. A control oriented diesel engine NOx emission model for on board diagnostics and engine control with sensor feedback. Proceedings of Combustion Institute-Canadian Section; 2019, p. 44.
  • Dewangan A, Mallick A, Yadav AK, et al. Combustion-generated pollutions and strategy for its control in CI engines: a review. Mater Today: Proc. 2020;21:1728–1733.
  • International Energy Agency. CO2 emissions from fuel combustion highlights 2019. Paris, France: IEA; 2019.
  • International Energy Agency. Energy technology perspectives 2016: towards sustainable urban energy systems. Paris, France: IEA; 2016.
  • Liu Z, Guo Z, Rao X, et al. A comprehensive review on the material performance affected by gaseous alternative fuels in internal combustion engines. Eng Fail Anal. 2022;139:106507. doi:10.1016/j.engfailanal.2022.106507.
  • Sundar SP, Palanimuthu V, Sathyamurthy R, et al. Feasibility study of neat plastic oil with TiO2 nanoadditive as an alternative fuel in internal combustion engine. J Therm Anal Calorim. 2022;147(3):2567–2578. doi:10.1007/s10973-021-10657-x.
  • Selvan BK, Das S, Chandrasekar M, et al. Utilization of biodiesel blended fuel in a diesel engine–combustion engine performance and emission characteristics study. Fuel. 2022;311:122621. doi:10.1016/j.fuel.2021.122621.
  • Hoang AT. Critical review on the characteristics of performance, combustion and emissions of PCCI engine controlled by early injection strategy based on narrow-angle direct injection (NADI). Energy Sources Part A. 2020:1–15. doi:10.1080/15567036.2020.1805048.
  • Dutta K, Daverey A, Lin JG. Evolution retrospective for alternative fuels: first to fourth generation. Renew Energy. 2014;69:114–122. doi:10.1016/j.renene.2014.02.044.
  • Bae C, Kim J. Alternative fuels for internal combustion engines. Proc Combust Inst. 2017;36(3):3389–3413. doi:10.1016/j.proci.2016.09.009.
  • Kowalewicz A, Wojtyniak M. Alternative fuels and their application to combustion engines. Proc Inst Mech Eng D: J Autom Eng. 2005;219(1):103–125. doi:10.1243/095440705X6399.
  • Tuli D, Kasture S. An overview of some futurist advanced biofuels and their conversion technologies. In: Tuli D, Kasture S, Kuila A. editors. Advanced Biofuel Technologies: Present Status, Challenges and Future Prospects. Elsevier; 2022:1–20. doi:10.1016/B978-0-323-88427-3.00001-5.
  • Pandey S. A critical review: application of methanol as a fuel for internal combustion engines and effects of blending methanol with diesel/biodiesel/ethanol on performance, emission, and combustion characteristics of engines. Heat Transf. 2022;51(4):3334–3352. doi:10.1002/htj.22453.
  • Marchuk А, Likhanov VA, Lopatin OP. Alternative energy: methanol, ethanol and alcohol esters of rapeseed oil as eco-friendly biofuel. Теоретическая и прикладная экология. 2019;3(3):80–86. doi:10.25750/1995-4301-2019-3-080-086.
  • Duraisamy G, Rangasamy M, Govindan N. A comparative study on methanol/diesel and methanol/PODE dual fuel RCCI combustion in an automotive diesel engine. Renew Energy. 2020;145:542–556. doi:10.1016/j.renene.2019.06.044.
  • Melo-Espinosa EA, Piloto-Rodríguez R, Goyos-Pérez L, et al. Emulsification of animal fats and vegetable oils for their use as a diesel engine fuel: an overview. Renew Sustain Energy Rev. 2015;47:623–633. doi:10.1016/j.rser.2015.03.091.
  • Issayev G, Giri BR, Elbaz AM, et al. Ignition delay time and laminar flame speed measurements of ammonia blended with dimethyl ether: a promising low carbon fuel blend. Renew Energy. 2022;181:1353–1370. doi:10.1016/j.renene.2021.09.117.
  • Dahlgren S. Biogas-based fuels as renewable energy in the transport sector: an overview of the potential of using CBG, LBG and other vehicle fuels produced from biogas. Biofuels. 2022;13(5):587–599. doi:10.1080/17597269.2020.1821571.
  • Anderhofstadt B, Spinler S. Factors affecting the purchasing decision and operation of alternative fuel-powered heavy-duty trucks in Germany: a Delphi study. Transport Res D: Transport Environ. 2019;73:87–107. doi:10.1016/j.trd.2019.06.003.
  • Bae Y, Mitra SK, Rindt CR, et al. Factors influencing alternative fuel adoption decisions in heavy-duty vehicle fleets. Transport Res D: Transport Environ. 2022;102:103150. doi:10.1016/j.trd.2021.103150.
  • Azam W, Khan I, Ali SA. Alternative energy and natural resources in determining environmental sustainability: a look at the role of government final consumption expenditures in France. Environ Sci Pollut Res Int. 2023;30(1):1949–1965. doi:10.1007/s11356-022-22334-z.
  • Uyaroğlu A, Ünaldı M. The influences of gasoline and diesel fuel additive types. Int J Energy Appl Technol. 2021;8(3):143–153. doi:10.31593/ijeat.791973.
  • Wallner T, Miers SA. Internal combustion engines, alternative fuels for. In: Elgowainy A. editors. Electric, Hybrid, and Fuel Cell Vehicles: Encyclopedia of Sustainability Science and Technology Series. New York, NY: Springer; 2021:27–66.
  • Daud S, Hamidi MA, Mamat R. A review of fuel additives’ effects and predictions on internal combustion engine performance and emissions. AIMSE. 2022;10(1):1–22. doi:10.3934/energy.2022001.
  • Haq MU, Jafry AT, Ahmad S, et al. Recent advances in fuel additives and their spray characteristics for diesel-based blends. Energies. 2022;15(19):7281. doi:10.3390/en15197281.
  • Siddartha GN, Ramakrishna CS, Kujur PK, et al. Effect of fuel additives on internal combustion engine performance and emissions. Mater Today: Proc. 2022;63:A9–A14. doi:10.1016/j.matpr.2022.06.307.
  • Mujtaba MA, Kalam MA, Masjuki HH, et al. Comparative study of nanoparticles and alcoholic fuel additives–biodiesel–diesel blend for performance and emission improvements. Fuel. 2020;279:118434. doi:10.1016/j.fuel.2020.118434.
  • Larsson E, Heinrichs J, Jacobson S. Tribological evaluation of a boric acid fuel additive in various engine fuels. Wear. 2022;502–503:204381. doi:10.1016/j.wear.2022.204381.
  • Srinivas Rao T, Jakeer Hussain S, Dhana Raju V, et al. Experimental assessment of various fuel additives on the performance and emission characteristics of the spark ignition engine. Int J Ambient Energy. 2022;43(1):1333–1338. doi:10.1080/01430750.2019.1694987.
  • Bennett J, Mabille C. Advanced fuel additives for modern internal combustion engines. In: Alternative fuels and advanced vehicle technologies for improved environmental performance. Amsterdam: Elsevier; 2022. p. 197–229. doi:10.1016/B978-0-323-90979-2.00002-0.
  • Awad O, Xiao M, Kamil M, et al. A review of the effects of gasoline detergent additives on the formation of combustion chamber deposits of gasoline direct injection engines. SAE Int J Fuels Lubr. 2021;14(1):13–25. doi:10.4271/04-14-01-0002.
  • Reddy SN, Wani MM. A comprehensive review on effects of nanoparticles–antioxidant additives–biodiesel blends on performance and emissions of diesel engine. Appl Sci Eng Progr. 2020;13(4):285–298.
  • Badia JH, Ramírez E, Bringué R, et al. New octane booster molecules for modern gasoline composition. Energy Fuels. 2021;35(14):10949–10997. doi:10.1021/acs.energyfuels.1c00912.
  • Paneerselvam P, Venkadesan G, Panithasan MS, et al. Evaluating the influence of cetane improver additives on the outcomes of a diesel engine characteristics fueled with peppermint oil diesel blend. Energies. 2021;14(10):2786. doi:10.3390/en14102786.
  • Sarmah DK, Deka DC. Use of yellow oleander (Thevetia peruviana) seed oil biodiesel as cetane and lubricity improver for petrodiesel. Rasayan J Chem. 2019;12(3):1547–1556.
  • Nie S, Cao L. Effect of mixed commercial cold flow improvers on flow properties of biodiesel from waste cooking oil. Processes. 2020;8(9):1094. doi:10.3390/pr8091094.
  • Lawan I, Zhou W, Idris AL, et al. Synthesis, properties and effects of a multi-functional biodiesel fuel additive. Fuel Process Technol. 2020;198:106228. doi:10.1016/j.fuproc.2019.106228.
  • Ağbulut Ü, Elibol E, Demirci T, et al. Synthesis of graphene oxide nanoparticles and the influences of their usage as fuel additives on CI engine behaviors. Energy. 2022;244:122603. doi:10.1016/j.energy.2021.122603.
  • Mrityunjayaswamy KM, Kumar TD, Tejas KS, et al. Experimental investigation on influence of metal based additives on performance, combustion and emission parameters of diesel engine. Mater Today: Proc. 2022;54:264–269. doi:10.1016/j.matpr.2021.09.021.
  • Khan S, Dewang Y, Raghuwanshi J, et al. Nanoparticles as fuel additive for improving performance and reducing exhaust emissions of internal combustion engines. Int J Environ Anal Chem. 2022;102(2):319–341. doi:10.1080/03067319.2020.1722810.
  • Dhahad HA, Hasan AM, Chaichan MT, et al. Prognostic of diesel engine emissions and performance based on an intelligent technique for nanoparticle additives. Energy. 2022;238:121855. doi:10.1016/j.energy.2021.121855.
  • Vara Lakshmi R, Jaikumar S, Srinivas V. A comprehensive review on the effect of nanoparticle dispersed diesel–biodiesel blends fuelled CI engine. J Inst Eng India Ser C. 2021;102(2):495–505. doi:10.1007/s40032-021-00661-3.
  • Basha JS, Al Balushi M, Soudagar ME, et al. Applications of nano-additives in internal combustion engines: a critical review. J Therm Anal Calorim. 2022;147(17):9383–9403. doi:10.1007/s10973-022-11199-6.
  • Venu H, Appavu P. Al2O3 nano additives blended Polanga biodiesel as a potential alternative fuel for existing unmodified DI diesel engine. Fuel. 2020;279:118518. doi:10.1016/j.fuel.2020.118518.
  • Küçükosman R, Yontar AA, Ocakoglu K. Nanoparticle additive fuels: atomization, combustion and fuel characteristics. J Anal Appl Pyrolysis. 2022;165:105575. doi:10.1016/j.jaap.2022.105575.
  • Reddy SN, Wani MM. Engine performance and emission studies by application of nanoparticles as additive in biodiesel diesel blends. Mater Today: Proc. 2021;43:3631–3634.
  • Fayad MA, Abed AM, Omran SH, et al. Influence of renewable fuels and nanoparticles additives on engine performance and soot nanoparticles characteristics. Int J Renew Energy Dev. 2022;11(4):1068–1077. doi:10.14710/ijred.2022.45294.
  • Devaraj A, Nagappan M, Yogaraj D, et al. Influence of nano-additives on engine behaviour using diesel-biodiesel blend. Mater Today: Proc. 2022;62:2266–2270. doi:10.1016/j.matpr.2022.03.598.
  • Krupakaran RL, Rani GJ, Anchupogu P, et al. Comparative assessment of MWCNTs and alumina nanoparticles dispersion in biodiesel blend on the engine characteristics of an unmodified DI diesel engine. Mater Today: Proc. 2022;68:1241–1251. doi:10.1016/j.matpr.2022.06.045.
  • Kalghatgi G. Developments in internal combustion engines and implications for combustion science and future transport fuels. Proc Combust Inst. 2015;35(1):101–115. doi:10.1016/j.proci.2014.10.002.
  • Tomar M, Kumar N. Influence of nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel, and blends: a review. Energy Sources A. 2020;42(23):2944–2961. doi:10.1080/15567036.2019.1623347.
  • Kanth S, Debbarma S, Das B. Effect of hydrogen enrichment in the intake air of diesel engine fuelled with Honge biodiesel blend and diesel. Int J Hydrogen Energy. 2020;45(56):32521–32533. doi:10.1016/j.ijhydene.2020.08.152.
  • Soudagar MEM, Afzal A, Safaei MR, et al. Investigation on the effect of cottonseed oil blended with different percentages of octanol and suspended MWCNT nanoparticles on diesel engine characteristics. J Therm Anal Calorim. 2022;147(1):543–543. doi:10.1007/s10973-020-10388-5.
  • Tavakoli S, Ebrahimzadeh MA, Habibi E, et al. Sub-chronic intraperitonealy toxicity assessments of modified silver nanoparticles capped coated Myrtus communis-derived the hydrolyzable tannins in a mice model. Nanomed Res J. 2020;5(3):288–297.
  • EL-Seesy AI, Waly MS, He Z, et al. Enhancement of the combustion and stability aspects of diesel-methanol-hydrous methanol blends utilizing n-octanol, diethyl ether, and nanoparticle additives. J Clean Prod. 2022;371:133673. doi:10.1016/j.jclepro.2022.133673.
  • Wei J, Yin Z, Wang C, et al. Impact of aluminium oxide nanoparticles as an additive in diesel-methanol blends on a modern DI diesel engine. Appl Therm Eng. 2021;185:116372. doi:10.1016/j.applthermaleng.2020.116372.
  • Chacko N, Jeyaseelan T. Comparative evaluation of graphene oxide and graphene nanoplatelets as fuel additives on the combustion and emission characteristics of a diesel engine fuelled with diesel and biodiesel blend. Fuel Process Technol. 2020;204:106406. doi:10.1016/j.fuproc.2020.106406.
  • Kałużny J, Waligorski M, Szymański GM, et al. Reducing friction and engine vibrations with trace amounts of carbon nanotubes in the lubricating oil. Tribol Int. 2020;151:106484. doi:10.1016/j.triboint.2020.106484.
  • Rashid MM, Forte Tavčer P, Tomšič B. Influence of titanium dioxide nanoparticles on human health and the environment. Nanomaterials (Basel). 2021;11(9):2354. doi:10.3390/nano11092354.
  • Godwin HA, Chopra K, Bradley KA, et al. The University of California Center for the environmental implications of nanotechnology. Environ Sci Technol. 2009;43(17):6453–6457. doi:10.1021/es8034544.
  • Rabajczyk A, Zielecka M, Porowski R, et al. Metal nanoparticles in the air: state of the art and future perspectives. Environ Sci Nano. 2020;7(11):3233–3254.
  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–839. doi:10.1289/ehp.7339.
  • Dikshit PK, Kumar J, Das AK, et al. Green synthesis of metallic nanoparticles: applications and limitations. Catalysts. 2021;11(8):902. doi:10.3390/catal11080902.
  • Kluschke P, Gnann T, Plötz P, et al. Market diffusion of alternative fuels and powertrains in heavy-duty vehicles: a literature review. Energy Rep. 2019;5:1010–1024. doi:10.1016/j.egyr.2019.07.017.
  • Mitchell MR, Link RE, Kao M-J, et al. Aqueous aluminum nanofluid combustion in diesel fuel. J Test Eval. 2008;36(2):100579. doi:10.1520/JTE100579.
  • Chandrasekaran V, Arthanarisamy M, Nachiappan P, et al. The role of nano additives for biodiesel and diesel blended transportation fuels. Transport Res D: Transport Environ. 2016;46:145–156. doi:10.1016/j.trd.2016.03.015.
  • Ershov MA, Savelenko VD, Makhova UA, et al. New insights on introducing modern multifunctional additives into motor gasoline. Sci Tot Environ. 2022;808:152034. doi:10.1016/j.scitotenv.2021.152034.
  • Wu G, Chen S, Meng X, et al. Development of antifreeze fracturing fluid systems for tight petroleum reservoir stimulations. Energy Fuels. 2021;35(15):12119–12131. doi:10.1021/acs.energyfuels.1c01819.
  • Bafghi AA, Bakhoda H, Chegeni FK. Effects of cerium oxide nanoparticle addition in diesel and diesel–biodiesel blends on the performance characteristics of a CI engine. Int J Mech Mechatron Eng. 2015;9:1507–1512.
  • Lenin M, Swaminathan M, Kumaresan G. Performance and emission characteristics of a DI diesel engine with a nanofuel additive. Fuel. 2013;109:362–365. doi:10.1016/j.fuel.2013.03.042.
  • Venkatesan H, Sivamani S, Sampath S, et al. A comprehensive review on the effect of nano metallic additives on fuel properties, engine performance and emission characteristics. Int J Renew Energy Res (IJRER). 2017;7:825–843.
  • Ampah JD, Yusuf AA, Agyekum EB, et al. Progress and recent trends in the application of nanoparticles as low carbon fuel additives—a state of the art review. Nanomaterials. 2022;12(9):1515. doi:10.3390/nano12091515.
  • Saxena V, Kumar N, Saxena VK. A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled CI engine. Renew Sustain Energy Rev. 2017;70:563–588. doi:10.1016/j.rser.2016.11.067.
  • Rao SC, Rao MS, GMRIT Performance analysis of DI diesel engine fuelled with diesel along with nano additives. IJETT. 2015;24(2):107–110. doi:10.14445/22315381/IJETT-V24P220.
  • Muthusamy S, Nallathambi SS, Kumar Ramasamy R, et al. Effects of nanoparticles blended biodiesel on single cylinder CI engine. Mater Today: Proc. 2018;5(2):6831–6838. doi:10.1016/j.matpr.2017.11.343.
  • Kumar TD, Hussain SS, Ramesha DK. Effect of a zinc oxide nanoparticle fuel additive on the performance and emission characteristics of a CI engine fuelled with cotton seed biodiesel blends. Mater Today: Proc. 2020;26:2374–2378. doi:10.1016/j.matpr.2020.02.509.
  • Ganesh D, Gowrishankar G. Effect of nano-fuel additive on emission reduction in a biodiesel fuelled CI engine. International conference on electrical and control engineering: IEEE 2011. p. 3453–3459.
  • Gavhane R, Kate A, Soudagar MEM, et al. Influence of silica nano-additives on performance and emission characteristics of soybean biodiesel fuelled diesel engine. Energies. 2021;14(5):1489. doi:10.3390/en14051489.
  • Ağbulut Ü, Karagöz M, Sarıdemir S, et al. Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and noise characteristics of a CI engine. Fuel. 2020;270:117521. doi:10.1016/j.fuel.2020.117521.
  • Sezer I. Effect of nano materials additives on fuel properties and combustion characteristics. J Fac Eng Archit Gazi Univ. 2019;34:115–135.
  • Pinchuk VA, Kuzmin AV. The effect of the addition of TiO2 nanoparticles to coal–water fuel on its thermophysical properties and combustion parameters. Fuel. 2020;267:117220. doi:10.1016/j.fuel.2020.117220.
  • Simsek S, Uslu S. Investigation of the impacts of gasoline, biogas and LPG fuels on engine performance and exhaust emissions in different throttle positions on SI engine. Fuel. 2020;279:118528. doi:10.1016/j.fuel.2020.118528.
  • Mohammed MK, Balla HH, Al-Dulaimi ZM, et al. Effect of ethanol–gasoline blends on SI engine performance and emissions. Case Stud Therm Eng. 2021;25:100891. doi:10.1016/j.csite.2021.100891.
  • Pachiannan T, Zhong W, Rajkumar S, et al. A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies. Appl Energy. 2019;251:113380. doi:10.1016/j.apenergy.2019.113380.
  • Sakthivel R, Ramesh K, Purnachandran R, et al. A review on the properties, performance and emission aspects of the third generation biodiesels. Renew Sustain Energy Rev. 2018;82:2970–2992. doi:10.1016/j.rser.2017.10.037.
  • Zaharin MS, Abdullah NR, Masjuki HH, et al. Evaluation on physicochemical properties of iso-butanol additives in ethanol–gasoline blend on performance and emission characteristics of a spark–ignition engine. Appl Therm Eng. 2018;144:960–971. doi:10.1016/j.applthermaleng.2018.08.057.
  • Sekoai PT, Ouma CN, Du Preez SP, et al. Application of nanoparticles in biofuels: an overview. Fuel. 2019;237:380–397. doi:10.1016/j.fuel.2018.10.030.
  • Khidr ME, Megahed TF, Ookawara S, et al. Effects of aluminum and copper oxides nanoparticles as fuel additives on diesel engine operating characteristics. Atmos Pollut Res. 2023;14(4):101721. doi:10.1016/j.apr.2023.101721.
  • Hoang AT. Combustion behavior, performance and emission characteristics of diesel engine fuelled with biodiesel containing cerium oxide nanoparticles: a review. Fuel Process Technol. 2021;218:106840. doi:10.1016/j.fuproc.2021.106840.
  • Kumar S, Dinesha P, Rosen MA. Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive. Energy. 2019;185:1163–1173. doi:10.1016/j.energy.2019.07.124.
  • Nanthagopal K, Kishna RS, Atabani AE, et al. A compressive review on the effects of alcohols and nanoparticles as an oxygenated enhancer in compression ignition engine. Energy Convers Manage. 2020;203:112244. doi:10.1016/j.enconman.2019.112244.
  • Hussain F, Soudagar ME, Afzal A, et al. Enhancement in combustion, performance, and emission characteristics of a diesel engine fueled with Ce–ZnO nanoparticle additive added to soybean biodiesel blends. Energies. 2020;13(17):4578. doi:10.3390/en13174578.
  • Radhakrishnan S, Munuswamy DB, Devarajan Y, et al. Effect of nanoparticle on emission and performance characteristics of a diesel engine fueled with cashew nutshell biodiesel. Energy Sources A. 2018;40(20):2485–2493. doi:10.1080/15567036.2018.1502848.
  • Alenezi RA, Norkhizan AM, Mamat R, et al. Investigating the contribution of carbon nanotubes and diesel-biodiesel blends to emission and combustion characteristics of diesel engine. Fuel. 2021;285:119046. doi:10.1016/j.fuel.2020.119046.
  • Khatri D, Goyal R. Effects of silicon dioxide nanoparticles on the performance and emission features at different injection timings using water diesel emulsified fuel. Energy Convers Manage. 2020;205:112379. doi:10.1016/j.enconman.2019.112379.
  • Yaşar A, Keskin A, Yıldızhan Ş, et al. Effects of titanium-based additive with blends of butanol and diesel fuel on engine characteristics. IJGW. 2018;15(1):38–53. doi:10.1504/IJGW.2018.091950.
  • Örs I, Sarıkoç S, Atabani A, et al. The effects on performance, combustion and emission characteristics of DICI engine fuelled with TiO2 nanoparticles addition in diesel/biodiesel/n-butanol blends. Fuel. 2018;234:177–188. doi:10.1016/j.fuel.2018.07.024.
  • Ağbulut Ü. Understanding the role of nanoparticle size on energy, exergy, thermoeconomic, exergoeconomic, and sustainability analyses of an IC engine: a thermodynamic approach. Fuel Process Technol. 2022;225:107060. doi:10.1016/j.fuproc.2021.107060.
  • Vigneswaran R, Balasubramanian D, Sastha BS. Performance, emission and combustion characteristics of unmodified diesel engine with titanium dioxide (TiO2) nano particle along with water-in-diesel emulsion fuel. Fuel. 2021;285:119115. doi:10.1016/j.fuel.2020.119115.
  • Senthil Kumar J, Ramesh Bapu B, Gugan R. Emission examination on nanoparticle blended diesel in constant speed diesel engine. Pet Sci Technol. 2020;38(2):98–105. doi:10.1080/10916466.2019.1683579.
  • Yuvarajan D, Babu MD, BeemKumar N, et al. Experimental investigation on the influence of titanium dioxide nanofluid on emission pattern of biodiesel in a diesel engine. Atmos Pollut Res. 2018;9(1):47–52. doi:10.1016/j.apr.2017.06.003.
  • Kumar AM, Kannan M, Nataraj G. A study on performance, emission and combustion characteristics of diesel engine powered by nano-emulsion of waste orange peel oil biodiesel. Renew Energy. 2020;146:1781–1795. doi:10.1016/j.renene.2019.06.168.
  • Nithya S, Manigandan S, Gunasekar P, et al. The effect of engine emission on canola biodiesel blends with TiO2. Int J Ambient Energy. 2019;40(8):838–841. doi:10.1080/01430750.2017.1421583.
  • Verma S, Upadhyay R, Shankar R, et al. Performance and emission characteristics of micro-algae biodiesel with butanol and TiO2 nano-additive over diesel engine. Sustain Energy Technol Assess. 2023;55:102975. doi:10.1016/j.seta.2022.102975.
  • Nutakki PK, Gugulothu SK, Ramachander J. Effect of metal-based SiO2 nanoparticles blended concentration on performance, combustion and emission characteristics of CRDI diesel engine running on Mahua methyl ester biodiesel. Silicon. 2021;13(12):4773–. doi:10.1007/s12633-021-01001-x.
  • Mehra KS, Pal J, Goel V. A comprehensive review on the atomization and spray characteristics of renewable biofuels. Sustain Energy Technol Assess. 2023;56:103106. doi:10.1016/j.seta.2023.103106.
  • Nour M, Attia AM, Nada SA. Combustion, performance and emission analysis of diesel engine fuelled by higher alcohols (butanol, octanol and heptanol)/diesel blends. Energy Convers Manage. 2019;185:313–329. doi:10.1016/j.enconman.2019.01.105.
  • Temizer İ. The combustion analysıs and wear effect of biodiesel fuel used in a diesel engine. Fuel. 2020;270:117571. doi:10.1016/j.fuel.2020.117571.
  • Luo J, Chen J, Chen X, et al. Construction of cerium oxide nanoparticles immobilized on the surface of zinc vanadate nanoflowers for accelerated photocatalytic degradation of tetracycline under visible light irradiation. J Colloid Interface Sci. 2021;587:831–844. doi:10.1016/j.jcis.2020.11.044.
  • Raman LA, Deepanraj B, Rajakumar S, et al. Experimental investigation on performance, combustion and emission analysis of a direct injection diesel engine fuelled with rapeseed oil biodiesel. Fuel. 2019;246:69–74. doi:10.1016/j.fuel.2019.02.106.
  • Ağbulut Ü, Sarıdemir S, Rajak U, et al. Effects of high-dosage copper oxide nanoparticles addition in diesel fuel on engine characteristics. Energy. 2021;229:120611. doi:10.1016/j.energy.2021.120611.
  • Sachuthananthan B, Krupakaran RL, Balaji G. Exploration on the behaviour pattern of a DI diesel engine using magnesium oxide nano additive with plastic pyrolysis oil as alternate fuel. Int J Ambient Energy. 2021;42(6):701–712. doi:10.1080/01430750.2018.1563812.
  • Özgür T, Özcanli M, Aydin K. Investigation of nanoparticle additives to biodiesel for improvement of the performance and exhaust emissions in a compression ignition engine. Int J Green Energy. 2015;12(1):51–56. doi:10.1080/15435075.2014.889011.
  • Mousavi SB, Heris SZ, Estellé P. Experimental comparison between ZnO and MoS2 nanoparticles as additives on performance of diesel oil-based nano lubricant. Sci Rep. 2020;10(1):5813. doi:10.1038/s41598-020-62830-1.
  • Kalaimurugan K, Karthikeyan S, Periyasamy M, et al. Experimental studies on the influence of copper oxide nanoparticle on biodiesel–diesel fuel blend in CI engine. Energy Sources A. 2019:1–16. doi:10.1080/15567036.2019.1679290.
  • Chen AF, Adzmi MA, Adam A, et al. Combustion characteristics, engine performances and emissions of a diesel engine using nanoparticle-diesel fuel blends with aluminium oxide, carbon nanotubes and silicon oxide. Energy Convers Manage. 2018;171:461–477. doi:10.1016/j.enconman.2018.06.004.
  • Nie J, Jia T, Pan L, et al. Development of high-energy-density liquid aerospace fuel: a perspective. Trans Tianjin Univ. 2022;28(1):1–5. doi:10.1007/s12209-021-00302-x.
  • Bhan S, Gautam R, Singh P, et al. A comprehensive review of performance, combustion, and emission characteristics of biodiesel blend with nanoparticles in diesel engines. Recent Trends Therm Eng: Select Proc ICCEMME 2021; 2022. p. 73–88.
  • Mohan S, Dinesha P. Performance and emissions of biodiesel engine with hydrogen peroxide emulsification and cerium oxide (CeO2) nanoparticle additives. Fuel. 2022;319:123872. doi:10.1016/j.fuel.2022.123872.
  • Sateesh KA, Yaliwal VS, Soudagar ME, et al. Utilization of biodiesel/Al2O3 nanoparticles for combustion behavior enhancement of a diesel engine operated on dual fuel mode. J Therm Anal Calorim. 2022;147(10):5897–5911. doi:10.1007/s10973-021-10928-7.
  • Maroušek J. Aluminum nanoparticles from liquid packaging board improve the competitiveness of (bio) diesel. Clean Tech Environ Policy. 2023;25(3):1059–1067. doi:10.1007/s10098-022-02413-y.
  • Illipilla M, Lankapalli SV, Sagari J. Influence of dispersant mixed TiO2 nanoparticles on stability and physicochemical properties of Semecarpus anacardium biodiesel blend. Int Nano Lett. 2023;13(1):53–62. doi:10.1007/s40089-022-00384-y.
  • Kannan G, Karvembu R, Anand R. Effect of metal based additive on performance emission and combustion characteristics of diesel engine fuelled with biodiesel. Appl Energy. 2011;88(11):3694–3703. doi:10.1016/j.apenergy.2011.04.043.
  • Gumus S, Ozcan H, Ozbey M, et al. Aluminum oxide and copper oxide nanodiesel fuel properties and usage in a compression ignition engine. Fuel. 2016;163:80–87. doi:10.1016/j.fuel.2015.09.048.
  • Snow SJ, McGee J, Miller DB, et al. Inhaled diesel emissions generated with cerium oxide nanoparticle fuel additive induce adverse pulmonary and systemic effects. Toxicol Sci. 2014;142(2):403–417. doi:10.1093/toxsci/kfu187.
  • Resitoglu IA. Metal‐based additives “acetylferrocene and ruthenium polypyridyl complex” to improve performance and emission characteristics of Ci engine. Environ Prog Sustain Energy. 2019;38(5):13158. doi:10.1002/ep.13158.
  • Gupta H, Agrawal G, Mathur J. An overview of nanofluids: a new media towards green environment. Int J Environ Sci. 2012;3:433–440.
  • Debnath BK, Saha UK, Sahoo N. A comprehensive review on the application of emulsions as an alternative fuel for diesel engines. Renew Sustain Energy Rev. 2015;42:196–211. doi:10.1016/j.rser.2014.10.023.
  • Mei D, Zuo L, Adu-Mensah D, et al. Combustion characteristics and emissions of a common rail diesel engine using nanoparticle-diesel blends with carbon nanotube and molybdenum trioxide. Appl Therm Eng. 2019;162:114238. doi:10.1016/j.applthermaleng.2019.114238.
  • Liu J, Wu P, Sun P, et al. Effects of iron-based fuel borne catalyst addition on combustion, in-cylinder soot distribution and exhaust emission characteristics in a common-rail diesel engine. Fuel. 2021;290:120096. doi:10.1016/j.fuel.2020.120096.
  • Kumbhar V, Pandey A, Sonawane CR, et al. Numerical and experimental investigation of the influence of various metal-oxide-based nanoparticles on performance, combustion, and emissions of CI engine fuelled with tamarind seed oil methyl ester. Energy. 2023;265:126258. doi:10.1016/j.energy.2022.126258.
  • Wei J, He C, Lv G, et al. The combustion, performance and emissions investigation of a dual-fuel diesel engine using silicon dioxide nanoparticle additives to methanol. Energy. 2021;230:120734. doi:10.1016/j.energy.2021.120734.
  • Abdulhaleem SM. Effect of SiO2 nanopartıcles added to dıesel fuel on the performance and pollutant emissions of a four stroke diesel engine. IQJMME. 2019;19(2):129–137. doi:10.32852/iqjfmme.v19i2.329.
  • Khatri D, Goyal R, Gupta RK, Department of Mechanical Engineering, Manipal University Jaipur, Rajasthan, India., et al. Performance and emission features of diesel–silicon dioxide (SiO2) nano particles fuelled operated VCR diesel engine. IJEAT. 2019;8(6):5050–5055. doi:10.35940/ijeat.F9549.088619.
  • Rangabashiam D, Logesh K, Yashvanth U, et al. Detailed study on the effect of nanoparticle size on emission characteristics of diesel engine. Pet Sci Technol. 2019;37(18):2018–2024. doi:10.1080/10916466.2019.1613430.
  • Adzmi M, Abdullah A, Abdullah Z, et al. Effect of Al2O3 and SiO2 metal oxide nanoparticles blended with POME on combustion, performance and emissions characteristics of a diesel engine. IJAME. 2019;16(3):6859–6873. doi:10.15282/ijame.16.3.2019.03.0515.
  • Ramachander J, Gugulothu S, Sastry G. Performance and emission reduction characteristics of metal based SiO2 nanoparticle additives blended with ternary fuel (Diesel-MME-Pentanol) on CRDI diesel engine. Silicon. 2022;14(5):2249–2263. doi:10.1007/s12633-021-01024-4.
  • Valihesari M, Pirouzfar V, Ommi F, et al. Investigating the effect of Fe2O3 and TiO2 nanoparticle and engine variables on the gasoline engine performance through statistical analysis. Fuel. 2019;254:115618. doi:10.1016/j.fuel.2019.115618.
  • Warju W, Drastiawati NS, Ariyanto SR, et al. The effect of titanium dioxide (TiO2) based metallic catalytic converter on the four-stroke motorcycle engine performance. J PhysConf Ser. 2021;1747(1):012031. doi:10.1088/1742-6596/1747/1/012031.
  • Srinivasan SK, Kuppusamy R, Krishnan P. Effect of nanoparticle-blended biodiesel mixtures on diesel engine performance, emission, and combustion characteristics. Environ Sci Pollut Res Int. 2021;28(29):39210–39226. doi:10.1007/s11356-021-13367-x.
  • Parasuraman V, Sekar PP, Lee H, et al. A remarkable photocatalyst filter for indoor air treatment. Catalysts. 2022;12(11):1433. doi:10.3390/catal12111433.
  • D'Silva R, Binu K, Bhat T. Performance and emission characteristics of a CI engine fuelled with diesel and TiO2 nanoparticles as fuel additive. Mater Today: Proc. 2015;2(4–5):3728–3735. doi:10.1016/j.matpr.2015.07.162.
  • Jayaraman J, Karthik M, Krishna BM, et al. Impact of titanium oxide nano additives on the performance characteristics of a CI engine fuelled with Manilkara zapota methyl ester blends. Mater Today: Proc. 2021;44:3601–3605. doi:10.1016/j.matpr.2020.09.497.
  • Karthikeyan P, Viswanath G. Effect of titanium oxide nanoparticles in Tamanu biodiesel operated in a two cylinder diesel engine. Mater Today: Proc. 2020;22:776–780. doi:10.1016/j.matpr.2019.10.138.
  • Karthikeyan S, Prathima A. Environmental effect of CI engine using microalgae methyl ester with doped nano additives. Transport Res D: Transport Environ. 2017;50:385–396. doi:10.1016/j.trd.2016.11.028.
  • Praveen A, Rao GLN, Balakrishna B. Performance and emission characteristics of a diesel engine using Calophyllum inophyllum biodiesel blends with TiO2 nanoadditives and EGR. Egypt J Pet. 2018;27(4):731–738. doi:10.1016/j.ejpe.2017.10.008.
  • Jafarmadar S, Amini Niaki SR. Experimental exergy analyses in a DI diesel engine fuelled with a mixture of diesel fuel and TiO2 nanoparticle. Env Prog Sustain Energy. 2022;41(1):13703. doi:10.1002/ep.13703.
  • Karagoz M, Uysal C, Agbulut U, et al. Exergetic and exergoeconomic analyses of a CI engine fueled with diesel–biodiesel blends containing various metal-oxide nanoparticles. Energy. 2021;214:118830. doi:10.1016/j.energy.2020.118830.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.