223
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Kinetic and thermodynamic approaches on biodiesel reaction in a simultaneously cooled enhanced microwave system

ORCID Icon
Pages 155-164 | Received 16 Mar 2023, Accepted 10 Jun 2023, Published online: 19 Jun 2023

References

  • Ma F, Hanna MA. Biodiesel production: a review. Bioresour Technol. 1999;70(1):1–15. doi:10.1016/S0960-8524(99)00025-5.
  • Ataya F, Dubé MA, Ternan M. Single-phase and two-phase base-catalyzed transesterification of canola oil to fatty acid methyl esters at ambient conditions. Ind. Eng. Chem. Res. 2006;45(15):5411–5417. doi:10.1021/ie060152o.
  • Sivasamy A, Cheah KY, Fornasiero P, et al. Catalytic applications in the production of biodiesel from vegetable oils. ChemSusChem. 2009;2(4):278–300. doi:10.1002/cssc.200800253.
  • Ataya F, Dubé MA, Ternan M. Variables affecting the induction period during acid-catalyzed transesterification of canola oil to FAME. Energy Fuels. 2008;22(1):679–685. doi:10.1021/ef7005386.
  • Canakci M, Van Gerpen J. Biodiesel production via acid catalysis. Trans Am Soc Agric Eng. 1999;42:1203–1210. doi:10.13031/2013.13285.
  • Temur Ergan B, Yılmazer G, Bayramoğlu M. Fast, high quality and low-cost biodiesel production using dolomite catalyst in an enhanced microwave system with simultaneous cooling. Clean Chem Eng. 2022;3:100051. doi:10.1016/j.clce.2022.100051.
  • Ilgen O. Dolomite as a heterogeneous catalyst for transesterification of canola oil. Fuel Process Technol. 2011;92(3):452–455. doi:10.1016/j.fuproc.2010.10.009.
  • Ilgen O. Reaction kinetics of dolomite catalyzed transesterification of canola oil and methanol. Fuel Process Technol. 2012;95:62–66. doi:10.1016/j.fuproc.2011.11.015.
  • Murguía-Ortiz D, Cordova I, Manriquez ME, et al. Na-CaO/MgO dolomites used as heterogeneous catalysts in canola oil transesterification for biodiesel production. Mater Lett. 2021;291:129587. doi:10.1016/j.matlet.2021.129587.
  • Korkut I, Bayramoglu M. Selection of catalyst and reaction conditions for ultrasound assisted biodiesel production from canola oil. Renew Energy. 2018;116:543–551. doi:10.1016/j.renene.2017.10.010.
  • Correia LM, de Sousa Campelo N, Novaes DS, et al. Characterization and application of dolomite as catalytic precursor for canola and sunflower oils for biodiesel production. Chem Eng J. 2015;269:35–43. doi:10.1016/j.cej.2015.01.097.
  • Jindapon W, Ngamcharussrivichai C. Heterogeneously catalyzed transesterification of palm oil with methanol to produce biodiesel over calcined dolomite: the role of magnesium oxide. Energy Convers Manag. 2018;171:1311–1321. doi:10.1016/j.enconman.2018.06.068.
  • Şenoymak Tarakçı Mİ, İlgen O. Parametric and kinetic study of simultaneous esterification and transesterification of model waste sunflower oil by using zirconium sulfate catalyst. Reac Kinet Mech Cat. 2023;136(1):85–106. doi:10.1007/s11144-022-02322-7.
  • Li E, Xu ZP, Rudolph V. MgCoAl–LDH derived heterogeneous catalysts for the ethanol transesterification of canola oil to biodiesel. Appl Catal B Environ. 2009;88(1–2):42–49. doi:10.1016/j.apcatb.2008.09.022.
  • Veličković AV, Avramović JM, Stamenković OS, et al. Kinetics of the sunflower oil ethanolysis using CaO as catalyst. Chem Ind Chem Eng Q. 2016;22:409–418. doi:10.2298/CICEQ160106003V.
  • Bayramoğlu M, Korkut İ, Temur Ergan B. Reusability and regeneration of solid catalysts used in ultrasound assisted biodiesel production. Turk J Chem. 2021;45(2):342–347. doi:10.3906/kim-2008-33.
  • Khedri B, Mostafaei M, Safieddin Ardebili SM. A review on microwave-assisted biodiesel production. Energy Source Part A Recover Util Environ Eff. 2019;41(19):2377–2395. doi:10.1080/15567036.2018.1563246.
  • Korkut I, Bayramoglu M. Ultrasound assisted biodiesel production in presence of dolomite catalyst. Fuel. 2016;180:624–629. doi:10.1016/j.fuel.2016.04.101.
  • Liu S, Wang Y, McDonald T, et al. Efficient production of biodiesel using radio frequency heating. Energy Fuels. 2008;22(3):2116–2120. doi:10.1021/ef800038g.
  • Nayak SN, Bhasin CP, Nayak MG. A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems. Renew Energy. 2019;143:1366–1387. doi:10.1016/j.renene.2019.05.056.
  • Temur Ergan B, Bayramoğlu M. Poly (l-lactic acid) synthesis using continuous microwave irradiation–simultaneous cooling method. Chem Eng Commun. 2018;205(12):1665–1677. doi:10.1080/00986445.2018.1464446.
  • Ergan BT, Bayramoğlu M, Özcan S. Emulsion polymerization of styrene under continuous microwave irradiation. Eur Polym J. 2015;69:374–384. doi:10.1016/j.eurpolymj.2015.06.021.
  • Gabriel C, Gabriel S, Grant EH, et al. Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev. 1998;27(3):213–224. doi:10.1039/a827213z.
  • de la Hoz A, Díaz-Ortiz À, Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev. 2005;34(2):164–178. doi:10.1039/b411438h.
  • Baghurst DR, Mingos DMP. Superheating effects associated with microwave dielectric heating. J. Chem. Soc. Chem. Commun. 1992;(9):674–677. doi:10.1039/c39920000674.
  • Ergan BT, Bayramogalu M. Investigation of the microwave effect: a new approach for the solvent effect on the microwave-assisted decomposition reaction of 2,2′-azobis(isobutyronitrile). Ind Eng Chem Res. 2014;53:13016–13022. doi:10.1021/ie5021359.
  • Ergan BT, Bayramoǧlu M. Kinetic approach for investigating the “microwave effect”: decomposition of aqueous potassium persulfate. Ind Eng Chem Res. 2011;50:6629–6637. doi:10.1021/ie200095y.
  • Ergan BT, Bayramoğlu M. The effects of microwave power and dielectric properties on the microwave-assisted decomposition kinetics of AIBN in n-butanol. J Ind Eng Chem. 2013;19(1):299–304. doi:10.1016/j.jiec.2012.08.015.
  • Ergan BT, Bayramoğlu M. Mathematical modelling of liquid heating-cooling in the multimode microwave system. Appl Therm Eng. 2020;165:114556. doi:10.1016/j.applthermaleng.2019.114556.
  • Devaraj Naik B, Udayakumar M. Kinetics and thermodynamic analysis of transesterification of waste cooking sunflower oil using bentonite-supported sodium methoxide catalyst. Biomass Convers Biorefinery. 2021;1:1–14. doi:10.1007/S13399-021-01836-9/FIGURES/5.
  • Ong LK, Kurniawan A, Suwandi AC, et al. Transesterification of leather tanning waste to biodiesel at supercritical condition: kinetics and thermodynamics studies. J Supercrit Fluids. 2013;75:11–20. doi:10.1016/j.supflu.2012.12.018.
  • Sagiroglu A, Isbilir ŞS, Ozcan HM, et al. Comparison of biodiesel productivities of different vegetable oils by acidic catalysis. CI&CEQ. 2011;17(1):53–58. doi:10.2298/CICEQ100114054S.
  • Ergan BT. Selection and modeling of simultaneous cooled microwave system for polycondensation of L-lactic acid. J Microw Power Electromagn Energy. 2020;54(1):63–80. doi:10.1080/08327823.2020.1714107.
  • Holčapek M, Jandera P, Fischer J, et al. Analytical monitoring of the production of biodiesel by high-performance liquid chromatography with various detection methods. J Chromatogr A. 1999;858(1):13–31. doi:10.1016/S0021-9673(99)00790-6.
  • Sharma A, Kodgire P, Singh Kachhwaha S. An experimental investigation of the performance of biodiesel production techniques: optimization, kinetics, and energy analysis. Therm Sci Eng Prog. 2021;22:100842. doi:10.1016/j.tsep.2021.100842.
  • Gimenes De Souza C, Torres De Araújo M, Cavalcante Dos Santos R, et al. Analysis and quantitation of fatty acid methyl esters in biodiesel by High-Performance liquid chromatography. Energy Fuels. 2018;32(11):11547–11554. doi:10.1021/acs.energyfuels.8b02544.
  • Singh AK, Fernando SD. Reaction kinetics of soybean oil transesterification using heterogeneous metal oxide catalysts. Chem. Eng. Technol. 2007;30(12):1716–1720. doi:10.1002/ceat.200700274.
  • Houston PL. Chemical kinetics and reaction dynamics. 2001:330.
  • Lente G. Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng. 2018;21:76–83. doi:10.1016/j.coche.2018.03.007.
  • Gaurav A, Dumas S, Mai CTQ, et al. A kinetic model for a single step biodiesel production from a high free fatty acid (FFA) biodiesel feedstock over a solid heteropolyacid catalyst. Green Energy Environ. 2019;4(3):328–341. doi:10.1016/j.gee.2019.03.004.
  • Ataya F, Dubé MA, Ternan M. Transesterification of canola oil to fatty acid methyl ester (FAME) in a continuous flow liquid − liquid packed bed reactor. Energy Fuels. 2008;22(5):3551–3556. doi:10.1021/ef800462t.
  • Martin J, Gracia AR, Asuero AG. Fitting nonlinear calibration curves: no models perfect. JASMI. 2017;7(1):1–17. doi:10.4236/jasmi.2017.71001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.