141
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The influence of single and multi-carbon nanotubes as additives in diesel-biodiesel fuel blends on diesel engine combustion characteristics, performance, and emissions

& ORCID Icon
Pages 177-190 | Received 05 Apr 2023, Accepted 24 Jun 2023, Published online: 03 Jul 2023

References

  • El-Seesy AI, Abdel-Rahman AK, Bady M, et al. Performance, combustion, and emission characteristics of a diesel engine fueled by biodiesel-diesel mixtures with multi-walled carbon nanotubes additives. Energy Convers Manage. 2017;135:373–393. doi: 10.1016/j.enconman.2016.12.090.
  • Agarwal AK. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci. 2007;33(3):233–271. doi: 10.1016/j.pecs.2006.08.003.
  • Bankovic’-Ilic’ IB, Stamenkovic’ OS, Veljkovic’ VB. Biodiesel production from nonedible plant oils. Renew Sustain Energy Rev. 2012;16:3621–3647. doi: 10.1016/j.rser.2012.03.002.
  • Cheikh K, Sary A, Khaled L, et al. Experimental assessment of performance and emissions maps for biodiesel fueled compression ignition engine. Appl Energy. 2016;161:320–329. doi: 10.1016/j.apenergy.2015.10.042.
  • Zhu M, Ma Y, Zhang D. Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine. Appl Energy. 2012;91(1):166–172. doi: 10.1016/j.apenergy.2011.09.007.
  • Taghizadeh-Alisaraei A, Ghobadian B, Tavakoli-Hashjin T, et al. Vibration analysis of a diesel engine using biodiesel and petrodiesel fuel blends. Fuel. 2012;102:414–422. doi: 10.1016/j.fuel.2012.06.109.
  • Tan PQ, Ruan SS, Hu ZY, et al. Particle number emissions from a light duty diesel engine with biodiesel fuels under transient-state operating conditions. Appl Energy. 2014;113:22–31. doi: 10.1016/j.apenergy.2013.07.009.
  • Lee SW, Herage T, Young B. Emission reduction potential from the combustion of soy methyl ester fuel blended with petroleum distillate fuel. Fuel. 2004;83(11–12):1607–1613. doi: 10.1016/j.fuel.2004.02.001.
  • Hazrati S, Govahi M, Mollaei S. Fatty acid profile and in vitro biological properties of two rosaceae species (Pyrus glabra and Pyrus syriaca), grown as wild in Iran. Food Sci Nutr. 2020;8(2):841–848. doi: 10.1002/fsn3.1352.
  • Jalilian H, Zarei A, Erfani-Moghadam J. Phylogeny relationship among commercial and wild pear species based on morphological characteristics and SCoT molecular markers. Sci Hortic. 2018;235:323–333. doi: 10.1016/j.scienta.2018.03.020.
  • Howari H, Parvez M, Khan O, et al. Multi-Objective optimization for ranking waste biomass materials based on performance and emission parameters in a pyrolysis process—an AHP–TOPSIS approach. Sustainability. 2023;15(4):3690. doi: 10.3390/su15043690.
  • Khan O, Khan ME, Yadav AK, et al. The ultrasonic-assisted optimization of biodiesel production from eucalyptus oil. Energy Sources Part A. 2017;39(13):1323–1331. doi: 10.1080/15567036.2017.1328001.
  • Yadav AK, Khan O, Khan ME. Utilization of high FFA landfill waste (leachates) as a feedstock for sustainable biodiesel production: its characterization and engine performance evaluation. Environ Sci Pollut Res Int. 2018;25(32):32312–32320. doi: 10.1007/s11356-018-3199-0.
  • Hazrati Yadekori S, Alirezalu K, Tahmasebi Sarvestani Z, et al. Investigation of oil content and fatty acid composition of pyrus glabra boiss. J Med Plants. 2012;2(42):32–36.
  • Hashemi SMB, Khaneghah AM, Barba FJ, et al. Characteristics of wild pear (pyrus glabra boiss) seed oil and its oil-in-water emulsions: a novel source of edible oil. Eur J Lipid Sci Technol. 2018;120(2):1700284. doi: 10.1002/ejlt.201700284.
  • Górnaś P, Mišina I, Ruisa S, et al. Composition of tocochromanols in kernels recovered from different sweet cherry (Prunus avium L.) cultivars: RP-HPLC/FLD and RP-UPLC-ESI/MS n study. Eur Food Res Technol. 2015;240(3):663–667. doi: 10.1007/s00217-014-2382-x.
  • Mushtaq M, Akram S, Ishaq S, et al. Pear (Pyrus communis) seed oil. In: Ramadan M, editor. Fruit oils: chemistry and functionality. Cham: Springer; 2019. p. 859–874.
  • Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes. Chem Rev. 2005;105(4):1025–1102. doi: 10.1021/cr030063a.
  • Nam J, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 2003;301(5641):1884–1886. doi: 10.1126/science.1088755.
  • Shaafi T, Sairam K, Gopinath A, et al. Effect of dispersion of various nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel and blends—a review. Renew Sustain Energy Rev. 2015;49:563–573. doi: 10.1016/j.rser.2015.04.086.
  • Heydari-Maleney K, Taghizadeh-Alisaraei A, Ghobadian B, et al. Analyzing and evaluation of carbon nanotubes additives to diesohol-B2 fuels on performance and emission of diesel engines. Fuel. 2017;196:110–123. doi: 10.1016/j.fuel.2017.01.091.
  • Shadidi B, Haji Agha Alizade H, Ghobadian B. The effect of a novel hybrid nano-catalyst in diesel-biodiesel fuel blends on the energy balance of a diesel engine. Energy Equip Syst. 2017;5:59–69. doi: 10.22059/EES.2017.24720.
  • Shadidi B, Haji Agha Alizade H, Najafi G. Performance and exergy analysis of a diesel engine run on petrodiesel and biodiesel blends containing mixed CeO2 and MoO3 nanocatalyst. Biofuels. 2022;13(1):1–7. doi: 10.1080/17597269.2020.1779976.
  • Khan O, Zaheen Khan M, Ahmad N, et al. Performance and emission analysis on palm oil derived biodiesel coupled with aluminum oxide nanoparticles. Mater Today: Proc. 2021; 46:6781–6786. doi: 10.1016/j.matpr.2021.04.338.
  • Khan O, Khan MZ, Bhatt BK, et al. Multi-objective optimization of diesel engine performance, vibration and emission parameters employing blends of biodiesel, hydrogen and cerium oxide nanoparticles with the aid of response surface methodology approach. Int J Hydrogen Energy. 2022;48(56):21513–21529. doi: 10.1016/j.ijhydene.2022.04.044.
  • Bhagwat VA, Pawar C, Banapurmath NR. Graphene nanoparticle – biodiesel blended diesel engine. Int J Eng Res Technol. 2015;4:75–78.
  • Fangsuwannarak K, Triratanasirichai K, Ratchasima N. Improvements of palm biodiesel properties by using Nano-Tio 2 additive, exhaust emission and engine performance. Rom Rev Precis Mech Opt Mechatronics. 2013;43:111–118.
  • Ganesh D, Gowrishankar G. Effect of nano-fuel additive on emission reduction in a biodiesel fuelled CI engine. Electr Control Eng IEEE 2011: 3453–9. doi: 10.1109/ICECENG.2011.6058240.
  • Mohammadi N, Ostovar N, Granato D. Pyrus glabra seed oil as a new source of Mono and polyunsaturated fatty acids: composition, thermal, and FTIR spectroscopic characterization. LWT. 2023;181:114790. doi: 10.1016/j.lwt.2023.114790.
  • Ahmed A, Baig H, Sundaram S, et al. Use of nanofluids in solar PV/thermal systems. Int J Photoenergy. 2019;2019:1–17. doi: 10.1155/2019/8039129.
  • Xing M, Yu J, Wang R. Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes. Int J Heat Mass Transf. 2015;88:609–616. doi: 10.1016/j.ijheatmasstransfer.2015.05.005.
  • Massie DD. Neural-network fundamentals for scientists and engineers. In: efficiency, cost, optimization, simulation and environmental impact of energy systems ECOS’01, Istanbul, Turkey; July4–6; 2001. p. 123–31.
  • Sharon H, Jayaprakash R, Karthigai Selvan M, et al. Biodiesel production and prediction of engine performance using SIMULINK model of trained neural network. Fuel. 2012;99:197–203. doi: 10.1016/j.fuel.2012.04.019.
  • Çay Y, Korkmaz I, Çiçek A, et al. Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network. Energy. 2013;50:177–186. doi: 10.1016/j.energy.2012.10.052.
  • Arul Mozhi Selvan V, Anand RB, Udayakumar M. Effect of cerium oxide nanoparticles and carbon nanotubes as fuel-borne additives in diesterol blends on the performance, combustion and emission characteristics of a variable compression ratio engine. Fuel. 2014;130:160–167. doi: 10.1016/j.fuel.2014.04.034.
  • Prabu A, Anand RB. Emission control strategy by adding alumina and cerium oxide nano particle in biodiesel. J Energy Inst. 2016;89(3):366–372. doi: 10.1016/j.joei.2015.03.003.
  • Rashedul HK, Masjuki HH, Kalam MA, et al. The effect of additives on properties, performance and emission of biodiesel fuelled compression ignition engine. Energy Convers Manage. 2014;88:348–364. doi: 10.1016/j.enconman.2014.08.034.
  • Abbaszadeh A, Ghobadian B, Najafi G, et al. An experimental investigation of the effective parameters on wet washing of biodiesel purification. Int J Automot Mech Eng. 2014;9(1):1525–1537. doi: 10.15282/ijame.9.2013.4.0126.
  • Najafi G, Ghobadian B. LLK1694-wind energy resources and development in Iran. Renew Sustain Energy Rev. 2011;15(6):2719–2728. doi: 10.1016/j.rser.2011.03.002.
  • Najafi G, Ghobadian B, Moosavian A, et al. SVM and ANFIS for prediction of performance and exhaust emissions of a SI engine with gasoline-ethanol blended fuels. Appl Therm Eng. 2016;95:186–203. doi: 10.1016/j.applthermaleng.2015.11.009.
  • Fayyazi E, Ghobadian B, Najafi G, et al. An ultrasound-assisted system for the optimization of biodiesel production from chicken fat oil using a genetic algorithm and response surface methodology. Ultrason Sonochem. 2015;26:312–320. doi: 10.1016/j.ultsonch.2015.03.007.
  • Nematizade P, Ghobadian B, Najafi G. Investigation of fossil fuel and liquid biofuel blend properties using artificial neural network. Int J Automot Mech Eng. 2012;5(1):639–647. doi: 10.15282/ijame.5.2012.10.0051.
  • Fakhimi A, Hemami B. Rock uniaxial compression test and axial splitting. Procedia Eng. 2017;191:623–630. doi: 10.1016/j.proeng.2017.05.226.
  • Fakhimi A, Hemami B. Axial splitting of rocks under uniaxial compression. Int J Rock Mech Min Sci. 2015;79:124–134. doi: 10.1016/j.ijrmms.2015.08.013.
  • Darvishi H, Khostaghaza MH, Najafi G. Ohmic heating of pomegranate juice: electrical conductivity and pH change. J Saudi Soc Agric Sci. 2013;12(2):101–108. doi: 10.1016/j.jssas.2012.08.003.
  • Shehata MS, Razek SMA. Experimental investigation of diesel engine performance and emission characteristics using jojoba/diesel blend and sunflower oil. Fuel. 2011;90(2):886–897. doi: 10.1016/j.fuel.2010.09.011.
  • Dwivedi G, Jain S, Sharma MP. Impact analysis of biodiesel on engine performance—a review. Renew Sustain Energy Rev. 2011;15(9):4633–4641. doi: 10.1016/j.rser.2011.07.089.
  • Gumus M. Evaluation of hazelnut kernel oil of Turkish origin as alternative fuel in diesel engines. Renew Energ. 2008;33(11):2448–2457. doi: 10.1016/j.renene.2008.02.005.
  • Pinto AC, Guarieiro LLN, Rezende JC, et al. Biodiesel: an overview. J. Braz. Chem. Soc. 2005;16(6B):1313–1330. doi: 10.1590/S0103-50532005000800003.
  • Shi X, Yu Y, He H, et al. Emission characteristics using methyl soyate-ethanol-diesel fuel blends on a diesel engine. Fuel. 2005;84:1543–1549. doi: 10.1016/j.fuel.2005.03.001.
  • Guibet JC, Faure E. Carburants et moteurs tome 2. 2nd ed. Paris: edition Technip; 1997.
  • Najafi G. Diesel engine combustion characteristics using nano-particles in biodiesel-diesel blends. Fuel. 2018;212:668–678. doi: 10.1016/j.fuel.2017.10.001.
  • Shekofteh M, Gundoshmian TM, Jahanbakhshi A, et al. Performance and emission characteristics of a diesel engine fueled with functionalized multi-wall carbon nanotubes (MWCNTs-OH) and diesel–biodiesel–bioethanol blends. Energy Rep. 2020;6:1438–1447. doi: 10.1016/j.egyr.2020.05.025.
  • Solmaz H, Mohammad Safieddin Ardebili S, Calam A, et al. Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method. Energy. 2021;227:120518. doi: 10.1016/j.energy.2021.120518.
  • Sadhik Basha J, Anand RB. Performance, emission and combustion characteristics of a diesel engine using carbon nanotubes blended jatropha methyl ester emulsions. Alexandria Eng J. 2014;53(2):259–273. doi: 10.1016/j.aej.2014.04.001.
  • Mei D, Zuo L, Adu-Mensah D, et al. Combustion characteristics and emissions of a common rail diesel engine using nanoparticle-diesel blends with carbon nanotube and molybdenum trioxide. Appl Therm Eng. 2019;162:114238. doi: 10.1016/j.applthermaleng.2019.114238.
  • Khan O, Khan MZ, Alam MD, et al. Comparative study of soft computing and metaheuristic models in developing reduced exhaust emission characteristics for diesel engine fueled with various blends of biodiesel and metallic nanoadditive mixtures: an ANFIS–GA–HSA approach. ACS Omega. 2023;8(8):7344–7367. doi: 10.1021/acsomega.2c05246.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.