66
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Thermochemical recovery of waste wood in a domestic wood stove: influence of the geometry of wood batch in the fireplace on pollutant emissions

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 191-203 | Received 05 Apr 2023, Accepted 01 Jul 2023, Published online: 17 Jul 2023

References

  • Pachauri RK, Mayer L. Intergovernmental panel on climate change. Climate change 2014: synthesis report. Geneva, Switzerland: Intergovernmental Panel on Climate Change; 2015.
  • EU. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (recast) (Text with EEA relevance.). 2018. http://data.europa.eu/eli/dir/2018/2001/oj/eng
  • Arrêté du 29 juillet 2014 fixant les critères de sortie du statut de déchet pour les broyats d’emballages en bois pour un usage comme combustibles de type biomasse dans une installation de combustion.2014.
  • Statistics | Eurostat. 2023. https://ec.europa.eu/eurostat/databrowser/view/ten00062/default/bar?lang=fr
  • FCBA & ADEME. Évaluation du gisement de déchet bois et son positionnement dans la filière bois/bois énergie [Internet]. FCBA & ADEME; 2015. p. 116. https://librairie.ademe.fr/dechets-economie-circulaire/2821-evaluation-du-gisement-de-dechet-bois-et-son-positionnement-dans-la-filiere-bois-bois-energie.html
  • Huron M, Oukala S, Lardière J, et al. An extensive characterization of various treated waste wood for assessment of suitability with combustion process. Fuel. 2017;202:118–128. doi:10.1016/j.fuel.2017.04.025.
  • Alakangas E, Keränen J, Alakangas E, et al. Classification of used wood to biomass fuel or solid recycled fuel and cascading use in Finland. 2015.
  • Yorulmaz SY, Atimtay AT. Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Process Technol. 2009;90(7-8):939–946. doi:10.1016/j.fuproc.2009.02.010.
  • Reina J, Velo E, Puigjaner L. Kinetic study of the pyrolysis of waste wood. Ind Eng Chem Res. 1998;37(11):4290–4295. doi:10.1021/ie980083g.
  • Moreno AI, Font R. Pyrolysis of furniture wood waste: decomposition and gases evolved. J Anal Appl Pyrolysis. 2015;113:464–473. doi:10.1016/j.jaap.2015.03.008.
  • Moreno AI, Font R, Conesa JA. Combustion of furniture wood waste and solid wood: kinetic study and evolution of pollutants. Fuel. 2017;192:169–177. doi:10.1016/j.fuel.2016.12.022.
  • Pérez JF, Melgar A, Benjumea PN. Effect of operating and design parameters on the gasification/combustion process of waste biomass in fixed bed downdraft reactors: an experimental study. Fuel. 2012;96:487–496. doi:10.1016/j.fuel.2012.01.064.
  • Gehrmann H-J, Mätzing H, Nowak P, et al. Waste wood characterization and combustion behaviour in pilot lab scale. J Inst Energy. 2020;93(4):1634–1641. doi:10.1016/j.joei.2020.02.001.
  • Parvez M, Khan O. Parametric simulation of biomass integrated gasification combined cycle (BIGCC) power plant using three different biomass materials. Biomass Conv Bioref. 2020;10(4):803–812. doi:10.1007/s13399-019-00499-x.
  • Parvez M. Energy and exergy analyses of a biomass integrated gasification cogeneration system for combined production of power and refrigeration. Biofuels. 2015;6(5-6):369–376. doi:10.1080/17597269.2015.1110777.
  • Schobing J, Meyer A, Leyssens G, et al. Inventory of the french densified log market: characterization and emission factors measurement of twenty commercial briquettes. Fuel. 2023;335:127060. doi:10.1016/j.fuel.2022.127060.
  • Rabaçal M, Fernandes U, Costa M. Combustion and emission characteristics of a domestic boiler fired with pellets of pine, industrial wood wastes and peach stones. Renew Energy. 2013;51:220–226. doi:10.1016/j.renene.2012.09.020.
  • Khodaei H, Olson C, Patino D, et al. Multi-objective utilization of wood waste recycled from construction and demolition (C&D): products and characterization. Waste Manag. 2022;149:228–238. doi:10.1016/j.wasman.2022.06.021.
  • Fachinger F, Drewnick F, Gieré R, et al. How the user can influence particulate emissions from residential wood and pellet stoves: emission factors for different fuels and burning conditions. Atmos Environ. 2017;158:216–226. doi:10.1016/j.atmosenv.2017.03.027.
  • Oros DR, Simoneit BRT. Identification and emission factors of molecular tracers in organic aerosols from biomass burning part 1. Temperate climate conifers. Appl Geochem. 2001;16(13):1513–1544. doi:10.1016/S0883-2927(01)00021-X.
  • Rogge WF, Hildemann LM, Mazurek MA, et al. Sources of fine organic aerosol. 9. Pine, oak, and synthetic log combustion in residential fireplaces.Environ Sci Technol. 1998;32:13–22. doi:10.1021/es960930b.
  • Vicente ED, Vicente AM, Evtyugina M, et al. Emissions from residential combustion of certified and uncertified pellets. Renew Energy. 2020;161:1059–1071. doi:10.1016/j.renene.2020.07.118.
  • Singh D, Tassew DD, Nelson J, et al. Physicochemical and toxicological properties of wood smoke particulate matter as a function of wood species and combustion condition. J Hazard Mater. 2023;441:129874. doi:10.1016/j.jhazmat.2022.129874.
  • Kuye A, Kumar P. A review of the physicochemical characteristics of ultrafine particle emissions from domestic solid fuel combustion during cooking and heating. Sci Total Environ. 2023;886:163747. doi:10.1016/j.scitotenv.2023.163747.
  • EN 13229:2001/A2:2004 - Inset appliances including open fires fired by solid fuels - Requirements and test methods [Internet]. iTeh Standards. 2023. https://standards.iteh.ai/catalog/standards/cen/f66e86d0-5d3d-4cd5-a90a-15f04d7dace3/en-13229-2001-a2-2004
  • Leyssens G. PREPABOIS : étude de l’impact de la préparation du combustible et de ses caractérisitiques sur les émissions polluantes du bois-énergie [Internet]. 2021. https://librairie.ademe.fr/energies-renouvelables-reseaux-et-stockage/1508-prepabois-etude-de-l-impact-de-la-preparation-du-combustible-et-de-ses-caracterisitiques-sur-les-emissions-polluantes-du-bois-energie.html
  • Kuznetsov GV, Syrodoy SV, Borisov BV, et al. Influence of homeomorphism of the surface of a wood particle on the characteristics of its ignition. Renew Energy. 2023;203:828–840. doi:10.1016/j.renene.2022.12.097.
  • Vicente ED, Duarte MA, Calvo AI, et al. Emission of carbon monoxide, total hydrocarbons and particulate matter during wood combustion in a stove operating under distinct conditions. Fuel Process Technol. 2015;131:182–192. doi:10.1016/j.fuproc.2014.11.021.
  • Thunman H, Leckner B. Ignition and propagation of a reaction front in cross-current bed combustion of wet biofuels. Fuel. 2001;80(4):473–481. doi:10.1016/S0016-2361(00)00127-7.
  • Porteiro J, Patiño D, Moran J, et al. Study of a Fixed-Bed biomass combustor: Influential parameters on ignition front propagation using parametric analysis. Energy Fuels. 2010;24(7):3890–3897. doi:10.1021/ef100422y.
  • Amorim EB, Carvalho JA, Soares Neto TG, et al. Influence of specimen size, tray inclination and air flow rate on the emission of gases from biomass combustion. Atmos Environ. 2013;74:52–59. doi:10.1016/j.atmosenv.2013.03.003.
  • Caposciutti G, Barontini F, Galletti C, et al. Woodchip size effect on combustion temperatures and volatiles in a small-scale fixed bed biomass boiler. Renew Energy. 2020;151:161–174. doi:10.1016/j.renene.2019.11.005.
  • Yang YB, Ryu C, Khor A, et al. Fuel size effect on pinewood combustion in a packed bed. Fuel. 2005;84(16):2026–2038. doi:10.1016/j.fuel.2005.04.022.
  • Sornek K, Filipowicz M, Rzepka K. Study of clean combustion of wood in a stove-fireplace with accumulation. J Inst Energy. 2017;90(4):613–623. doi:10.1016/j.joei.2016.05.001.
  • Gonçalves C, Alves C, Evtyugina M, et al. Characterisation of PM10 emissions from woodstove combustion of common woods grown in Portugal. Atmos Environ. 2010;44(35):4474–4480. doi:10.1016/j.atmosenv.2010.07.026.
  • Lea-Langton A, Atiku F, Bartle K, et al. Mechanism of the formation of smoke from the combustion of wood. 2015.
  • Fitzpatrick EM, Jones JM, Pourkashanian M, et al. Mechanistic aspects of soot formation from the combustion of pine wood. Energy Fuels. 2008;22(6):3771–3778. doi:10.1021/ef800456k.
  • Alves C, Gonçalves C, Fernandes AP, et al. Fireplace and woodstove fine particle emissions from combustion of Western mediterranean wood types. Atmos Res. 2011;101(3):692–700. doi:10.1016/j.atmosres.2011.04.015.
  • Su Y, Luo Y, Wu W, et al. Characteristics of pine wood oxidative pyrolysis: degradation behavior, carbon oxide production and heat properties. J Anal Appl Pyrolysis. 2012;98:137–143. doi:10.1016/j.jaap.2012.07.005.
  • Ozgen S, Cernuschi S, Giugliano M. Experimental evaluation of particle number emissions from wood combustion in a closed fireplace. Biomass Bioenergy. 2013;50:65–74. doi:10.1016/j.biombioe.2013.01.015.
  • Lamberg H, Nuutinen K, Tissari J, et al. Physicochemical characterization of fine particles from small-scale wood combustion. Atmos Environ. 2011;45(40):7635–7643. doi:10.1016/j.atmosenv.2011.02.072.
  • Fitzpatrick EM, Ross AB, Bates J, et al. Emission of oxygenated species from the combustion of pine wood and its relation to soot formation. Process Safety Environ Protect. 2007;85(5):430–440. doi:10.1205/psep07020.
  • Brandelet B, Rose C, Landreau J, et al. Toward a cleaner domestic wood heating by the optimization of firewood stoves? J Cleaner Prod. 2021;325:129338. doi:10.1016/j.jclepro.2021.129338.
  • Väätäinen S, Leskinen J, Lamberg H, et al. The effects of air staging and combustion air control on black carbon and other particulate and gaseous emissions from a sauna stove. Fuel. 2023;331:125769. doi:10.1016/j.fuel.2022.125769.
  • Fine PM, Cass GR, Simoneit BRT. Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the northeastern United States. Environ Sci Technol. 2001;35(13):2665–2675. doi:10.1021/es001466k.
  • Bhattu D, Zotter P, Zhou J, et al. Effect of stove technology and combustion conditions on gas and particulate emissions from residential biomass combustion. Environ Sci Technol. 2019;53(4):2209–2219. doi:10.1021/acs.est.8b05020.
  • Brandelet B. Physicochemical characterization of particles emitted during the three phases of wood logs combustion in domestic appliances | ProScience. 2021. https://www.scientevents.com/proscience/download/physicochemical-characterization-of-particles-emitted-during-the-three-phases-of-wood-logs-combustion-in-domestic-appliances/
  • Martinsson J, Eriksson AC, Nielsen IE, et al. Impacts of combustion conditions and photochemical processing on the light absorption of biomass combustion aerosol. Environ Sci Technol. 2015;49(24):14663–14671. doi:10.1021/acs.est.5b03205.
  • Poláčik J, Sitek T, Pospíšil J, et al. Emission of fine particles from residential combustion of wood: comparison of automatic boiler, manual log feed stove and thermo-gravimetric analysis. J Cleaner Prod. 2021;279:123664. doi:10.1016/j.jclepro.2020.123664.
  • Sippula O, Hytönen K, Tissari J, et al. Effect of wood fuel on the emissions from a Top-Feed pellet stove. Energy Fuels. 2007;21(2):1151–1160. doi:10.1021/ef060286e.
  • Han Y, Chen Y, Feng Y, et al. Different formation mechanisms of PAH during wood and coal combustion under different temperatures. Atmos Environ. 2020;222:117084. doi:10.1016/j.atmosenv.2019.117084.
  • Torvela T, Tissari J, Sippula O, et al. Effect of wood combustion conditions on the morphology of freshly emitted fine particles. Atmos Environ. 2014;87:65–76. doi:10.1016/j.atmosenv.2014.01.028.
  • Tissari J, Hytönen K, Lyyränen J, et al. A novel field measurement method for determining fine particle and gas emissions from residential wood combustion. Atmos Environ. 2007;41(37):8330–8344. doi:10.1016/j.atmosenv.2007.06.018.
  • Leskinen J, Tissari J, Uski O, et al. Fine particle emissions in three different combustion conditions of a wood chip-fired appliance – particulate physico-chemical properties and induced cell death. Atmos Environ. 2014;86:129–139. doi:10.1016/j.atmosenv.2013.12.012.
  • Hueglin C, Gaegauf C, Künzel S, et al. Characterization of wood combustion particles: morphology, mobility, and photoelectric activity. Environ Sci Technol. 1997;31(12):3439–3447. doi:10.1021/es970139i.
  • Stanmore BR, Brilhac JF, Gilot P. The oxidation of soot: a review of experiments, mechanisms and models. Carbon. 2001;39(15):2247–2268. doi:10.1016/S0008-6223(01)00109-9.
  • Tissari J, Lyyränen J, Hytönen K, et al. Fine particle and gaseous emissions from normal and smouldering wood combustion in a conventional masonry heater. Atmos Environ. 2008;42(34):7862–7873. doi:10.1016/j.atmosenv.2008.07.019.
  • Liu X, Li W, Xu H, et al. A comparative study of non-oxidative pyrolysis and oxidative cracking of cyclohexane to light alkenes. Fuel Process Technol. 2004;86(2):151–167. doi:10.1016/j.fuproc.2004.01.002.
  • Nyström R, Lindgren R, Avagyan R, et al. Influence of wood species and burning conditions on particle emission characteristics in a residential wood stove. Energy Fuels. 2017;31(5):5514–5524. doi:10.1021/acs.energyfuels.6b02751.
  • Alén R, Oesch P, Kuoppala E. Py—GC/AED studies on the thermochemical behavior of softwood. J Anal Appl Pyrolysis. 1995;35(2):259–265. doi:10.1016/0165-2370(95)00915-6.
  • Hoerning JM, Evans MA, Aerts DJ, et al. Organic emissions from combustion of wood, plywood and particleboard. 1995. https://www.osti.gov/biblio/214729-organic-emissions-from-combustion-wood-plywood-particleboard
  • Schmidt G, Trouvé G, Leyssens G, et al. Influence and modelling of wood washing on mineral and organic compositions of three woods (beech, fir and oak). J Inst Energy. 2020;93(1):198–209. doi:10.1016/j.joei.2019.03.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.