204
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Exploring the potential of microalgae cell factories for generation of biofuels

, & ORCID Icon
Pages 245-257 | Received 15 Apr 2023, Accepted 01 Jul 2023, Published online: 18 Jul 2023

References

  • López-Gómez JP, Pérez-Rivero C. Cellular systems. 2019.
  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, et al. Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Int. 2013;51:59–72. doi:10.1016/j.envint.2012.10.007.
  • Beetul K, Gopeechund A, Kaullysing D, et al. Challenges and opportunities in the present era of marine algal applications. In: Thajuddin N, Dhanasekaran D, editor. Algae – organisms for imminent biotechnology. Rijeka, Croatia: BoD – Books on Demand; 2016. p. 237–276.
  • Biris-Dorhoi E-S, Michiu D, Pop CR, et al. Macroalgae—a sustainable source of chemical compounds with biological activities. Nutrients. 2020;12(10):3085. doi:10.3390/nu12103085.
  • Roy M, Mohanty K. A comprehensive review on microalgal harvesting strategies: current status and future prospects. Algal Res. 2019;44:101683. doi:10.1016/j.algal.2019.101683.
  • Petersen J, Rredhi A, Szyttenholm J, et al. The world of algae reveals a broad variety of cryptochrome properties and functions. Front Plant Sci. 2021;12:1–33. doi:10.3389/fpls.2021.766509.
  • McCutcheon J, Lutz S, Williamson C, et al. Mineral phosphorus drives glacier algal blooms on the Greenland ice sheet. Nat Commun. 2021;12(1):1–11. doi:10.1038/s41467-020-20627-w.
  • Stewart A, Rioux D, Boyer F, et al. Altitudinal zonation of green algae biodiversity in the French Alps. Front Plant Sci. 2021;12:679428. doi:10.3389/fpls.2021.679428.
  • ElFar OA, Chang C-K, Leong HY, et al. Prospects of industry 5.0 in algae: customization of production and new advance technology for clean bioenergy generation. Energy Convers Manage. 2021;X(10):100048.
  • Kandasamy S, Narayanan M, He Z, et al. Current strategies and prospects in algae for remediation and biofuels: an overview. Biocatal Agric Biotechnol. 2021;35:102045. doi:10.1016/j.bcab.2021.102045.
  • Parker RW, Blanchard JL, Gardner C, et al. Fuel use and greenhouse gas emissions of world fisheries. Nature Clim Change. 2018;8(4):333–337. doi:10.1038/s41558-018-0117-x.
  • Dehghani Madvar M, Aslani A, Ahmadi MH, et al. Current status and future forecasting of biofuels technology development. Int J Energy Res. 2019;43(3):1142–1160. doi:10.1002/er.4344.
  • Udayan A, Pandey AK, Sirohi R, et al. Production of microalgae with high lipid content and their potential as sources of nutraceuticals. Phytochem Rev. 2022:1–28. doi:10.1007/s11101-021-09784-y.
  • World energy consumption statistics. 2022. https://yearbook.enerdata.net/total-energy/world-consumption-statistics.html
  • Mat Aron NS, Khoo KS, Chew KW, et al. Sustainability of the four generations of biofuels–a review. Int J Energy Res. 2020;44(12):9266–9282. doi:10.1002/er.5557.
  • Gielen D, Boshell F, Saygin D, et al. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019;24:38–50. doi:10.1016/j.esr.2019.01.006.
  • Chettri D, Sharma B, Singh S, et al. Renewable biofuel sources as bio-clean energy: potential and challenges. In: Bio-clean energy technologies. Vol. 1. Singapore: Springer; 2022. p. 31–44.
  • Alam MS, Tanveer MS. Conversion of biomass into biofuel: a cutting-edge technology. In: Bioreactors. Amsterdam, Netherlands: Elsevier; 2020. p. 55–74.
  • Alalwan HA, Alminshid AH, Aljaafari HA. Promising evolution of biofuel generations. Subject review. Renew Energy Focus. 2019;28:127–139. doi:10.1016/j.ref.2018.12.006.
  • De Bhowmick G, Sarmah AK, Sen R. Zero-waste algal biorefinery for bioenergy and biochar: a green leap towards achieving energy and environmental sustainability. Sci Total Environ. 2019;650(Pt 2):2467–2482. doi:10.1016/j.scitotenv.2018.10.002.
  • Kumar A, Droby S, Singh VK, et al. Entry, colonization, and distribution of endophytic microorganisms in plants. In: Microbial endophytes. Duxford, United Kingdom: Elsevier; 2020. p. 1–33.
  • Ganesan R, Manigandan S, Samuel MS, et al. A review on prospective production of biofuel from microalgae. Biotechnol Rep (Amst). 2020;27:e00509. doi:10.1016/j.btre.2020.e00509.
  • Suresh KS, Suresh P, Kudre TG.. Prospective ecofuel feedstocks for sustainable production. In: Advances in eco-fuels for a sustainable environment. Duxford, United Kingdom: Elsevier; 2019. p. 89–117.
  • Agarwalla A, Mishra S, Mohanty K. Treatment and recycle of harvested microalgal effluent using powdered activated carbon for reducing water footprint and enhancing biofuel production under a biorefinery model. Bioresour Technol. 2022;360:127598. doi:10.1016/j.biortech.2022.127598.
  • Kabir SB, Khalekuzzaman M, Hossain N, et al. Progress in biohythane production from microalgae-wastewater sludge co-digestion: an integrated biorefinery approach. Biotechnol Adv. 2022;57:107933. doi:10.1016/j.biotechadv.2022.107933.
  • Khoo KS, Chew KW, Yew GY, et al. Recent advances in downstream processing of microalgae lipid recovery for biofuel production. Bioresour Technol. 2020;304:122996. doi:10.1016/j.biortech.2020.122996.
  • Sivaramakrishnan R, Suresh S, Kanwal S, et al. Microalgal biorefinery concepts’ developments for biofuel and bioproducts: current perspective and bottlenecks. IJMS. 2022;23(5):2623. doi:10.3390/ijms23052623.
  • Kukwa DT, Chetty M. Microalgae: the multifaceted biomass of the 21st century. Biotechnol Appl Biomass. 2021;355:355–382.
  • Siqueira SF, Queiroz MI, Zepka LQ, et al. Introductory chapter: microalgae biotechnology—a brief introduction. Microalgal Biotechnol. 2018:1–12.
  • Sarwer A, Hamed SM, Osman AI, et al. Algal biomass valorization for biofuel production and carbon sequestration: a review. Environ Chem Lett. 2022;20(5):2797–2851. doi:10.1007/s10311-022-01458-1.
  • Geada P, Vasconcelos V, Vicente A, et al. Microalgal biomass cultivation. In: Algal green chemistry. Amsterdam, Netherlands: Elsevier; 2017. p. 257–284.
  • Wu H, Miao X. Biodiesel quality and biochemical changes of microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in response to nitrate levels. Bioresour Technol. 2014;170:421–427. doi:10.1016/j.biortech.2014.08.017.
  • Arutselvan C, Narchonai G, Pugazhendhi A, et al. Evaluation of microalgal strains and microalgal consortium for higher lipid productivity and rich fatty acid profile towards sustainable biodiesel production. Bioresour Technol. 2021;339:125524. doi:10.1016/j.biortech.2021.125524.
  • Sydney EB, Sydney ACN, de Carvalho JC, et al. Microalgal strain selection for biofuel production. In: Biofuels from algae. Amsterdam, Netherlands: Elsevier; 2019. p. 51–66.
  • Poh ZL, Kadir WNA, Lam MK, et al. The effect of stress environment towards lipid accumulation in microalgae after harvesting. Renew Energy. 2020;154:1083–1091. doi:10.1016/j.renene.2020.03.081.
  • Tao Y, Liu Z, Zheng J, et al. Microalgae production in human urine: fundamentals, opportunities, and perspectives. Front Microbiol. 2022;13. doi:10.3389/fmicb.2022.1067782.
  • Lam TP, Lee T-M, Chen C-Y, et al. Strategies to control biological contaminants during microalgal cultivation in open ponds. Bioresour Technol. 2018;252:180–187. doi:10.1016/j.biortech.2017.12.088.
  • Dharmaprabhakaran T, Karthikeyan S, Periyasamy M, et al. Algal biodiesel-promising source to power CI engines. Mater Today Proc. 2020;33:2870–2873. doi:10.1016/j.matpr.2020.02.775.
  • Khan S, Naushad M, Iqbal J, et al. Production and harvesting of microalgae and an efficient operational approach to biofuel production for a sustainable environment. Fuel. 2022;311:122543. doi:10.1016/j.fuel.2021.122543.
  • Nagappan S, Devendran S, Tsai P-C, et al. Potential of two-stage cultivation in microalgae biofuel production. Fuel. 2019;252:339–349. doi:10.1016/j.fuel.2019.04.138.
  • Fanka LS, da Rosa GM, de Morais MG, et al. Outdoor production of biomass and biomolecules by Spirulina (Arthrospira) and Synechococcus cultivated with reduced nutrient supply. Bioenerg Res. 2022;15(1):121–130. doi:10.1007/s12155-021-10320-1.
  • Verma R, Kumari KK, Srivastava A, et al. Photoautotrophic, mixotrophic, and heterotrophic culture media optimization for enhanced microalgae production. J Environ Chem Eng. 2020;8(5):104149. doi:10.1016/j.jece.2020.104149.
  • Chew KW, Chia SR, Show PL, et al. Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: a review. J Taiwan Inst Chem Eng. 2018;91:332–344. doi:10.1016/j.jtice.2018.05.039.
  • de Carvalho JC, Sydney EB, Tessari LFA, et al. Culture media for mass production of microalgae. In: Biofuels from algae. Amsterdam, Netherlands: Elsevier; 2019. p. 33–50.
  • Saad MG, Dosoky NS, Zoromba MS, et al. Algal biofuels: current status and key challenges. Energies. 2019;12(10):1920. doi:10.3390/en12101920.
  • Santoro I, Nardi M, Benincasa C, et al. Sustainable and selective extraction of lipids and bioactive compounds from microalgae. Molecules. 2019;24(23):4347. doi:10.3390/molecules24234347.
  • Bi Z, Zhang J, Zhu Z, et al. Generating biocrude from partially defatted Cryptococcus curvatus yeast residues through catalytic hydrothermal liquefaction. Appl Energy. 2018;209:435–444. doi:10.1016/j.apenergy.2017.11.031.
  • Liu J, Liu Y, Wang H, et al. Direct transesterification of fresh microalgal cells. Bioresour Technol. 2015;176:284–287. doi:10.1016/j.biortech.2014.10.094.
  • Karpagam R, Rani K, Ashokkumar B, et al. Green energy from Coelastrella sp. M-60: bio-nanoparticles mediated whole biomass transesterification for biodiesel production. Fuel. 2020;279:118490. doi:10.1016/j.fuel.2020.118490.
  • Nguyen HC, Nguyen ML, Wang F-M, et al. Biodiesel production by direct transesterification of wet spent coffee grounds using switchable solvent as a catalyst and solvent. Bioresour Technol. 2020;296:122334. doi:10.1016/j.biortech.2019.122334.
  • Aziz MMA, Kassim KA, Shokravi Z, et al. Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: a review. Renew Sustain Energy Rev. 2020;119:109621. doi:10.1016/j.rser.2019.109621.
  • Che CA, Kim SH, Hong HJ, et al. Optimization of light intensity and photoperiod for isochrysis galbana culture to improve the biomass and lipid production using 14-L photobioreactors with mixed light emitting diodes (LEDs) wavelength under two-phase culture system. Bioresour Technol. 2019;285:121323. doi:10.1016/j.biortech.2019.121323.
  • Chhandama MVL, Satyan KB, Changmai B, et al. Microalgae as a feedstock for the production of biodiesel: a review. Bioresour Technol Rep. 2021;15:100771. doi:10.1016/j.biteb.2021.100771.
  • Paz A, Karnaouri A, Templis CC, et al. Valorization of exhausted olive pomace for the production of omega-3 fatty acids by Crypthecodinium cohnii. Waste Manag. 2020;118:435–444. doi:10.1016/j.wasman.2020.09.011.
  • Fivga A, Speranza LG, Branco CM, et al. A review on the current state of the art for the production of advanced liquid biofuels. Aims Energy. 2019;7(1):46–76. doi:10.3934/energy.2019.1.46.
  • McNeff CV, McNeff LC, Yan B, et al. A continuous catalytic system for biodiesel production. Appl Catal, A. 2008;343(1-2):39–48. doi:10.1016/j.apcata.2008.03.019.
  • Qari H, Rehan M, Nizami A-S. Key issues in microalgae biofuels: a short review. Energy Procedia. 2017;142:898–903. doi:10.1016/j.egypro.2017.12.144.
  • Herrmann C, Kalita N, Wall D, et al. Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates. Bioresour Technol. 2016;214:328–337. doi:10.1016/j.biortech.2016.04.119.
  • Li L, Li Z, Song K, et al. Improving methane production from algal sludge based anaerobic digestion by co-pretreatment with ultrasound and zero-valent iron. J Cleaner Prod. 2020;255:120214. doi:10.1016/j.jclepro.2020.120214.
  • Zaidi AA, RuiZhe F, Malik A, et al. Conjoint effect of microwave irradiation and metal nanoparticles on biogas augmentation from anaerobic digestion of green algae. Int J Hydrogen Energy. 2019;44(29):14661–14670. doi:10.1016/j.ijhydene.2019.02.245.
  • Ebhodaghe S, Imanah O, Ndibe H. Biofuels from microalgae biomass: a review of conversion processes and procedures. Arab J Chem. 2022;15(2):103591. doi:10.1016/j.arabjc.2021.103591.
  • Vidya D, Arunkumar K. Molecular engineering/metabolic engineering-based advanced biotechnological approach in microalgal biorefinery. In: Micro-algae: next-generation feedstock for biorefineries. Singapore: Springer; 2022. p. 145–163.
  • Bharadwaj SV, Ram S, Pancha I, et al. Recent trends in strain improvement for production of biofuels from microalgae. In: Microalgae cultivation for biofuels production. London, United Kingdom: Elsevier; 2020. p. 211–225.
  • Hiltunen JK, Autio KJ, Schonauer MS, et al. Mitochondrial fatty acid synthesis and respiration. Biochim Biophys Acta. 2010;1797(6-7):1195–1202. doi:10.1016/j.bbabio.2010.03.006.
  • Naghshbandi MP, Tabatabaei M, Aghbashlo M, et al. Metabolic engineering of microalgae for biofuel production. In: Biofuels from algae. New York: Springer; 2019. p. 153–172.
  • Gomma AE, Lee S-K, Sun SM, et al. Improvement in oil production by increasing malonyl-CoA and glycerol-3-phosphate pools in Scenedesmus quadricauda. Indian J Microbiol. 2015;55(4):447–455. doi:10.1007/s12088-015-0546-4.
  • Li J, Han D, Wang D, et al. Choreography of transcriptomes and lipidomes of Nannochloropsis reveals the mechanisms of oil synthesis in microalgae. Plant Cell. 2014;26(4):1645–1665. doi:10.1105/tpc.113.121418.
  • Niu Y-F, Zhang M-H, Li D-W, et al. Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs. 2013;11(11):4558–4569. doi:10.3390/md11114558.
  • Chen CY, Kao AL, Tsai ZC, et al. Expression of type 2 diacylglycerol acyltransferse gene DGTT1 from Chlamydomonas reinhardtii enhances lipid production in Scenedesmus obliquus. Biotechnol J. 2016;11(3):336–344. doi:10.1002/biot.201500272.
  • Koyama Y, Takimoto K, Kojima A, et al. Characterization of the nuclear-and plastid-encoded secA-homologous genes in the unicellular red alga Cyanidioschyzon merolae. Biosci Biotechnol Biochem. 2011;75(10):2073–2078. doi:10.1271/bbb.110338.
  • Sumiya N, Kawase Y, Hayakawa J, et al. Expression of cyanobacterial acyl-ACP reductase elevates the triacylglycerol level in the red alga Cyanidioschyzon merolae. Plant Cell Physiol. 2015;56(10):1962–1980. doi:10.1093/pcp/pcv120.
  • Blatti JL, Beld J, Behnke CA, et al. Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions. 2012.
  • Hsieh H-J, Su C-H, Chien L-J. Accumulation of lipid production in Chlorella minutissima by triacylglycerol biosynthesis-related genes cloned from Saccharomyces cerevisiae and Yarrowia lipolytica. J Microbiol. 2012;50(3):526–534. doi:10.1007/s12275-012-2041-5.
  • Beacham TA, Ali ST. Growth dependent silencing and resetting of DGA1 transgene in Nannochloropsis salina. Algal Res. 2016;14:65–71. doi:10.1016/j.algal.2016.01.005.
  • Deng X-D, Gu B, Li Y-J, et al. The roles of acyl-CoA: diacylglycerol acyltransferase 2 genes in the biosynthesis of triacylglycerols by the green algae Chlamydomonas reinhardtii. Mol Plant. 2012;5(4):945–947. doi:10.1093/mp/sss040.
  • Trentacoste EM, Shrestha RP, Smith SR, et al. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci U S A. 2013;110(49):19748–19753. doi:10.1073/pnas.1309299110.
  • Li Z, Meng T, Ling X, et al. Overexpression of malonyl-CoA: ACP transacylase in schizochytrium sp. to improve polyunsaturated fatty acid production. J Agric Food Chem. 2018;66(21):5382–5391. doi:10.1021/acs.jafc.8b01026.
  • Li D-W, Cen S-Y, Liu Y-H, et al. A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica. J Biotechnol. 2016;229:65–71. doi:10.1016/j.jbiotec.2016.05.005.
  • Ma Y-H, Wang X, Niu Y-F, et al. Antisense knockdown of pyruvate dehydrogenase kinase promotes the neutral lipid accumulation in the diatom Phaeodactylum tricornutum. Microbial Cell Factories. 2014;13(1):1–9.
  • Ajjawi I, Verruto J, Aqui M, et al. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat Biotechnol. 2017;35(7):647–652. doi:10.1038/nbt.3865.
  • Ahmad I, Sharma AK, Daniell H, et al. Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2. Plant Biotechnol J. 2015;13(4):540–550. doi:10.1111/pbi.12278.
  • Nakazawa M, Andoh H, Koyama K, et al. Alteration of wax ester content and composition in Euglena gracilis with gene silencing of 3-ketoacyl-CoA thiolase isozymes. Lipids. 2015;50(5):483–492. doi:10.1007/s11745-015-4010-3.
  • Barry AN, Starkenburg SR, Sayre RT. Strategies for optimizing algal biology for enhanced biomass production. Front Energy Res. 2015;3:1. doi:10.3389/fenrg.2015.00001.
  • Park J, Craggs R, Shilton A. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling. Water Res. 2013;47(13):4422–4432. doi:10.1016/j.watres.2013.04.001.
  • Williams PJlB, Laurens LM. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci. 2010;3(5):554–590. doi:10.1039/b924978h.
  • Mehrabadi A, Craggs R, Farid MM. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production. Bioresour Technol. 2015;184:202–214. doi:10.1016/j.biortech.2014.11.004.
  • Vadiveloo A, Matos AP, Chaudry S, et al. Effect of CO2 addition on treating anaerobically digested abattoir effluent (ADAE) using Chlorella sp.(Trebouxiophyceae). J CO2 Util. 2020;38:273–281. doi:10.1016/j.jcou.2020.02.006.
  • Cui B, Liu C, Rong H, et al. CO2 favors the lipid and biodiesel production of microalgal-bacterial granular sludge. Results Eng. 2023;17:100980. doi:10.1016/j.rineng.2023.100980.
  • Zhang M, Leung K-T, Lin H, et al. The biological performance of a novel microalgal-bacterial membrane photobioreactor: effects of HRT and N/P ratio. Chemosphere. 2020;261:128199. doi:10.1016/j.chemosphere.2020.128199.[PMC]
  • Terigar BG, Theegala CS. Investigating the interdependence between cell density, biomass productivity, and lipid productivity to maximize biofuel feedstock production from outdoor microalgal cultures. Renew Energy. 2014;64:238–243. doi:10.1016/j.renene.2013.11.010.
  • Subramanian S, Barry AN, Pieris S, et al. Comparative energetics and kinetics of autotrophic lipid and starch metabolism in chlorophytic microalgae: implications for biomass and biofuel production. Biotechnol Biofuels. 2013;6(1):1–12. doi:10.1186/1754-6834-6-150.
  • Cazzaniga S, Dall’Osto L, Szaub J, et al. Domestication of the green alga chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor. Biotechnol Biofuels. 2014;7(1):1–13. doi:10.1186/s13068-014-0157-z.
  • Fu W, Chaiboonchoe A, Khraiwesh B, et al. Intracellular spectral recompositioning of light enhances algal photosynthetic efficiency. Sci Adv. 2017;3(9):e1603096. doi:10.1126/sciadv.1603096.
  • Negi S, Perrine Z, Friedland N, et al. Light regulation of light‐harvesting antenna size substantially enhances photosynthetic efficiency and biomass yield in green algae. Plant J. 2020;103(2):584–603. doi:10.1111/tpj.14751.
  • Chiang YD, Dutta S, Chen CT, et al. Functionalized Fe3O4@ silica core–shell nanoparticles as microalgae harvester and catalyst for biodiesel production. ChemSusChem,. 2015;8(5):789–794. doi:10.1002/cssc.201402996.
  • Fraga-García P, Kubbutat P, Brammen M, et al. Bare iron oxide nanoparticles for magnetic harvesting of microalgae: from interaction behavior to process realization. Nanomaterials. 2018;8(5):292. doi:10.3390/nano8050292.
  • Xu L, Guo C, Wang F, et al. A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresour Technol. 2011;102(21):10047–10051. doi:10.1016/j.biortech.2011.08.021.
  • Razack SA, Duraiarasan S, Mani V. Biosynthesis of silver nanoparticle and its application in cell wall disruption to release carbohydrate and lipid from C. vulgaris for biofuel production. Biotechnol Rep (Amst). 2016;11:70–76. doi:10.1016/j.btre.2016.07.001.
  • Duman F, Sahin U, Atabani A. Harvesting of blooming microalgae using green synthetized magnetic maghemite (γ-Fe2O3) nanoparticles for biofuel production. Fuel. 2019;256:115935. doi:10.1016/j.fuel.2019.115935.
  • Öztay D, İnan B, Koçer AT, et al. Effect of metallic nanoparticles on microalgal growth and lipid accumulation for biodiesel production. Braz J Chem Eng. 2023;40(1):103–114. doi:10.1007/s43153-022-00232-8.
  • Ren H-Y, Dai Y-Q, Kong F, et al. Enhanced microalgal growth and lipid accumulation by addition of different nanoparticles under xenon lamp illumination. Bioresour Technol. 2020;297:122409. doi:10.1016/j.biortech.2019.122409.
  • Sibi G, Kumar DA, Gopal T, et al. Metal nanoparticle triggered growth and lipid production in chlorella vulgaris. Int J Scientific Res Environ Sci Toxicol. 2017;2(1):1–8.
  • Pádrová K, Lukavský J, Nedbalová L, et al. Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae. J Appl Phycol. 2015;27(4):1443–1451. doi:10.1007/s10811-014-0477-1.
  • Rana MS, Bhushan S, Sudhakar DR, et al. Effect of iron oxide nanoparticles on growth and biofuel potential of Chlorella spp. Algal Res. 2020;49:101942. doi:10.1016/j.algal.2020.101942.
  • Bibi M, Zhu X, Munir M, et al. Bioavailability and effect of α-Fe2O3 nanoparticles on growth, fatty acid composition and morphological indices of Chlorella vulgaris. Chemosphere. 2021;282:131044. doi:10.1016/j.chemosphere.2021.131044.
  • Hasnain M, Munir N, Abideen Z, et al. Applying silver nanoparticles to enhance metabolite accumulation and biodiesel production in new algal resources. Agriculture. 2022;13(1):73. doi:10.3390/agriculture13010073.
  • Mykhaylenko NF, Zolotareva EK. The effect of copper and selenium nanocarboxylates on biomass accumulation and photosynthetic energy transduction efficiency of the green algae Chlorella vulgaris. Nanoscale Res Lett. 2017;12(1):8. doi:10.1186/s11671-017-1914-2.
  • Sarma SJ, Das RK, Brar SK, et al. Application of magnesium sulfate and its nanoparticles for enhanced lipid production by mixotrophic cultivation of algae using biodiesel waste. Energy. 2014;78:16–22. doi:10.1016/j.energy.2014.04.112.
  • Varaprasad D, Raghavendra P, Sudha NR, et al. Bioethanol production from green alga chlorococcum minutum through reduced graphene oxide-supported platinum-ruthenium (Pt-Ru/RGO) nanoparticles. Bioenergy Res. 2022;15(1):280–288. doi:10.1007/s12155-021-10282-4.
  • Shanab SMM, Partila AM, Ali HEA, et al. Characterization and impact of silver nanoparticles on cell growth, lipid, carbohydrate and fatty acids of Chlorella vulgaris and Dictyochloropsis splendida. Beilstein Arch. 2019;2019(1):91.
  • Walsh MJ, Van Doren LG, Shete N, et al. Financial tradeoffs of energy and food uses of algal biomass under stochastic conditions. Appl Energy. 2018;210:591–603. doi:10.1016/j.apenergy.2017.08.060.
  • Hoang AT, Sirohi R, Pandey A, et al. Biofuel production from microalgae: challenges and chances. Phytochem Rev. 2022:1–38. doi:10.1007/s11101-022-09819-y.
  • Chowdhury H, Loganathan B. Third-generation biofuels from microalgae: a review. Curr Opin Green Sustain Chem. 2019;20:39–44. doi:10.1016/j.cogsc.2019.09.003.
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306. doi:10.1016/j.biotechadv.2007.02.001.
  • Richardson JW, Johnson MD, Outlaw JL. Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the southwest. Algal Res. 2012;1(1):93–100. doi:10.1016/j.algal.2012.04.001.
  • Sathya AB, Thirunavukkarasu A, Nithya R, et al. Microalgal biofuel production: potential challenges and prospective research. Fuel. 2023;332:126199. doi:10.1016/j.fuel.2022.126199.
  • Davis R, Aden A, Pienkos PT. Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy. 2011;88(10):3524–3531. doi:10.1016/j.apenergy.2011.04.018.
  • Moshood TD, Nawanir G, Mahmud F. Microalgae biofuels production: a systematic review on socioeconomic prospects of microalgae biofuels and policy implications. Environ Challenges. 2021;5:100207. doi:10.1016/j.envc.2021.100207.
  • Morone P, Cottoni L. Biofuels: technology, economics, and policy issues. In: Handbook of biofuels production. Cambridge: Elsevier; 2016. p. 61–83.
  • Farooq W, Suh WI, Park MS, et al. Water use and its recycling in microalgae cultivation for biofuel application. Bioresour Technol. 2015;184:73–81. doi:10.1016/j.biortech.2014.10.140.
  • Murphy CF, Allen DT. Energy-water nexus for mass cultivation of algae. Environ Sci Technol. 2011;45(13):5861–5868. doi:10.1021/es200109z.
  • Katiyar R, Kumar A, Gurjar B. Microalgae based biofuel: challenges and opportunities. Biofuels. 2017:157–175.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.