158
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Bioenergy enhancement for isolated microalgae-yeast cocultured residual biomass as a function of inorganic micronutrients’ distribution

ORCID Icon, , , , &
Pages 303-315 | Received 28 Mar 2023, Accepted 15 Jul 2023, Published online: 31 Jul 2023

References

  • Berndes G, Hoogwijk M, Van Den Broek R. The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy. 2003;25(1):1–28. doi: 10.1016/S0961-9534(02)00185-X.
  • British Petroleum, BP Energy Outlook 2018. 2018;125. https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/energy-outlook/bp-energy-outlook-2018.pdf.
  • Kusch B. Urban renewable energy on the upswing: A spotlight on renewable energy in cities in REN21’s "Renewables 2019 Global Status Report," 2019. doi: 10.3390/resources8030139.
  • Brennan L, Owende P. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev. 2010;14(2):557–577. doi: 10.1016/j.rser.2009.10.009.
  • Zhu LD, Hiltunen E, Antila E, et al. Microalgal biofuels: flexible bioenergies for sustainable development. Renew Sustain Energy Rev. 2014;30:1035–1046. doi: 10.1016/j.rser.2013.11.003.
  • Zhu L. Biorefinery as a promising approach to promote microalgae industry: an innovative framework. Renewable Sustainable Energy Rev. 2015;41:1376–1384. doi: 10.1016/j.rser.2014.09.040.
  • Sforza E, Barbera E, Girotto F, et al. Anaerobic digestion of lipid-extracted microalgae: enhancing nutrient recovery towards a closed loop recycling. Biochem Eng J. 2017;121:139–146. doi: 10.1016/j.bej.2017.02.004.
  • Barontini F, Biagini E, Dragoni F, et al. Anaerobic digestion and co-digestion of oleaginous microalgae residues for biogas production. Chem Engin Transac. 2016;50:91–96. doi: 10.3303/CET1650016.
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev. 2010;14(1):217–232. doi: 10.1016/j.rser.2009.07.020.
  • Oosterkamp WJ. Use of volatile solids from biomass for energy production. Bioenergy Res Adv Appl. 2014:203–217. doi: 10.1016/B978-0-444-59561-4.00013-9.
  • Muthu Dinesh Kumar R, Anand R. Production of biofuel from biomass downdraft gasification and its applications. Cambridgeshire, UK: Woodhead Publishing; 2019. doi: 10.1016/B978-0-08-102791-2.00005-2.
  • Bach Q, Chen W. Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): a state-of-the-art review. Bioresour Technol. 2017;246(2017):88–100. doi: 10.1016/j.biortech.2017.06.087.
  • Acquah GE, Via BK, Fasina OO, et al. Chemometric modeling of thermogravimetric data for the compositional analysis of forest biomass. PloS ONE. 2017;12:1–15. doi: 10.1371/journal.pone.0172999.
  • Pistorius AMA, Degrip WJ, Egorova-Zachernyuk TA. Monitoring of biomass composition from microbiological sources by means of FT‐IR spectroscopy. Biotechnol Bioeng. 2009;103(1):123–129. doi: 10.1002/bit.22220.
  • Wagner H, Liu Z, Langner U, et al. The use of FTIR spectroscopy to assess quantitative changes in the biochemical composition of microalgae. J Biophotonics. 2010;3(8–9):557–566. doi: 10.1002/jbio.201000019.
  • Feng Q, Lin Y. Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: a brief review. Renew Sustain Energy Rev. 2017;77:1272–1287. doi: 10.1016/j.rser.2017.03.022.
  • Li X, Mei Q, Dai X, et al. Effect of anaerobic digestion on sequential pyrolysis kinetics of organic solid wastes using thermogravimetric analysis and distributed activation energy model. Bioresour Technol. 2017;227:297–307. doi: 10.1016/j.biortech.2016.12.057.
  • López-González D, Fernandez-Lopez M, Valverde JL, et al. Pyrolysis of three different types of microalgae: kinetic and evolved gas analysis. Energy. 2014;73:33–43. doi: 10.1016/j.energy.2014.05.008.
  • Viju D, Gautam R, Vinu R. Application of the distributed activation energy model to the kinetic study of pyrolysis of Nannochloropsis oculata. Algal Res. 2018;35:168–177. doi: 10.1016/j.algal.2018.08.026.
  • Kim SS, Ly HV, Kim J, et al. Pyrolysis of microalgae residual biomass derived from Dunaliella tertiolecta after lipid extraction and carbohydrate saccharification. Chem Eng J. 2015;263:194–199. doi: 10.1016/j.cej.2014.11.045.
  • Yang X, Wang X, Zhao B, et al. Simulation model of pyrolysis biofuel yield based on algal components and pyrolysis kinetics. Bioenerg Res. 2014;7(4):1293–1304. doi: 10.1007/s12155-014-9467-z.
  • Awais C, Schwede S, Thorin E, et al. Enhancing biomethane production by integrating pyrolysis and anaerobic digestion processes intergovernmental panel on climate change. Appl Energy. 2017;204:1074–1083. doi: 10.1016/j.apenergy.2017.05.006.
  • Miller B. Fuel considerations and burner design for ultra-supercritical power plants, in: Ultra-Supercritical Coal Power Plants Mater. Technol. Optim. 2013. doi: 10.1533/9780857097514.1.57.
  • Vereš J, Kolonicný J, Ochodek T. Biochar status under international law and regulatory issues for the practical application. Chem Eng Trans. 2014;37:799–804. doi: 10.3303/CET1437134.
  • Singh P, Kumari S, Guldhe A, et al. Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renew Sustain Energy Rev. 2016;55:1–16. doi: 10.1016/j.rser.2015.11.001.
  • Bajwa K, Bishnoi NR, Kirrolia A, et al. Response surface methodology as a statistical tool for optimization of physio biochemical cellular components of microalgae Chlorella pyrenoidosa for biodiesel production. Appl Water Sci. 2019;9:1–16.
  • Tripathi M, Bhatnagar A, Mubarak NM, et al. RSM optimization of microwave pyrolysis parameters to produce OPS char with high yield and large BET surface area. Fuel. 2020;277:118184. doi: 10.1016/j.fuel.2020.118184.
  • Srivatsa SC, Li F, Bhattacharya S. Optimization of reaction parameters for bio-oil production by catalytic pyrolysis of microalga Tetraselmis suecica: influence of Ni-loading on the bio-oil composition. Renew Energy. 2019;142:426–436. doi: 10.1016/j.renene.2019.04.130.
  • Suastes-Rivas JK, Hernández-Altamirano R, Mena-Cervantes VY, et al. Efficient production of fatty acid methyl esters by a wastewater-isolated microalgae-yeast coculture. Environ Sci Pollut Res. 2020;27(23):28490–28499. doi: 10.1007/s11356-019-07286-1.
  • Bischoff HW, Bold HC. Phycological studies. IV. Some soil algae from Enchanted Rock and related algal species. University of Texas Publications no 6318. 1963:1–95.
  • Suastes-Rivas JK, Hernández-Altamirano R, Mena-Cervantes VY, et al. Simultaneous optimization of biomass and metabolite production by a microalgae-yeast co-culture under inorganic micronutrients. Bioenerg Res. 2020;13(3):974–985. doi: 10.1007/s12155-020-10116-9.
  • Ozawa T. A new method of analyzing thermogravimetric data. BCSJ. 1965;38(11):1881–1886. doi: 10.1246/bcsj.38.1881.
  • Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Polym Lett. 1966;4(5):323–328 . doi: 10.1002/pol.1966.110040504.
  • Agrawal A, Chakraborty S. A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis. Bioresour Technol. 2013;128:72–80. doi: 10.1016/j.biortech.2012.10.043.
  • Talebi AF, Tabatabaei M, Chisti Y. BiodieselAnalyzer©: a user-friendly software for predicting the properties of prospective biodiesel. Biofuel Res J. 2014;1:55–57. doi: 10.18331/BRJ2015.1.2.4.
  • Nhuchhen DR, Abdul Salam P. Estimation of higher heating value of biomass from proximate analysis: a new approach. Fuel. 2012;99(2012):55–63. doi: 10.1016/j.fuel.2012.04.015.
  • Qian X, Lee S, Soto A, et al. Regression model to predict the higher heating value of poultry waste from proximate analysis. Energy Convers Resources Manag. 2018;7(3):39. doi: 10.3390/resources7030039.
  • QV, Bach WH, Chen S, C, Lin, et al. Wet torrefaction of microalga Chlorella vulgaris ESP-31 with microwave-assisted heating. Energy Convers Manag. 2017;141:163–170. doi: 10.1016/j.enconman.2016.07.035.
  • Sheng C, Azevedo JLT. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy. 2005;28(5):499–507. doi: 10.1016/j.biombioe.2004.11.008.
  • Cordero T, Marquez F, Rodriguez-Mirasol J, et al. Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel. 2001;80(11):1567–1571. doi: 10.1016/S0016-2361(01)00034-5.
  • Onifade M, Lawal AI, Aladejare AE, et al. Prediction of gross calorific value of solid fuels from their proximate analysis using soft computing and regression analysis. Int J Coal Prep Util. 2022;42(4):1170–1184. doi: 10.1080/19392699.2019.1695605.
  • Montgomery DC. Montgomery: design and analysis of experiments. 8th ed. Hoboken, NJ: John Willy & Sons; 2012. doi: 10.1198/tech.2006.s372.
  • Coates, J. Interpretation of infrared spectra, a practical approach. . In: Meyers RA, editors. Encyclopedia of analytical chemistry. Chichester: John Wiley & Sons Ltd; 2006. p. 10815–10837.
  • Ferreira AF, Soares Dias AP, Silva CM, et al. Evaluation of thermochemical properties of raw and extracted microalgae, energy. Energy. 2015;92:365–372. doi: 10.1016/j.energy.2015.04.078.
  • Meng Y, Yao C, Xue S, et al. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions. Bioresour Technol. 2014;151:347–354. doi: 10.1016/j.biortech.2013.10.064.
  • Gupta N, Khare P, Singh DP. Nitrogen-dependent metabolic regulation of lipid production in microalga Scenedesmus vacuolatus. Ecotoxicol Environ Saf. 2019;174:706–713. doi: 10.1016/j.ecoenv.2019.03.035.
  • Hamidi N, Yanuhar U, Wardana ING, Sukarni. Potential and properties of marine microalgae Nannochloropsis oculata as biomass fuel feedstock, Int J Energy Environ Eng. 2014;5(4):279–290. doi: 10.1007/s40095-014-0138-9.
  • Azizi K, Keshavarz Moraveji M, Abedini Najafabadi H. A review on bio-fuel production from microalgal biomass by using pyrolysis method. Renew Sustain Energy Rev. 2018;82:3046–3059. doi: 10.1016/j.rser.2017.10.033.
  • Salama ES, Kurade MB, Abou-Shanab RAI, et al. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew Sustain Energy Rev. 2017;79(2017):1189–1211. doi: 10.1016/j.rser.2017.05.091.
  • Marcilla A, Gómez-Siurana A, Gomis C, et al. Characterization of microalgal species through TGA/FTIR analysis: application to nannochloropsis sp. Thermochim Acta. 2009;484(1–2):41–47. doi: 10.1016/j.tca.2008.12.005.
  • Kebelmann K, Hornung A, Karsten U, et al. Intermediate pyrolysis and product identification by TGA and Py-GC/MS of green microalgae and their extracted protein and lipid components. Biomass Bioenergy. 2013;49:38–48. doi: 10.1016/j.biombioe.2012.12.006.
  • Ross AB, Jones JM, Kubacki ML, et al. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour Technol. 2008;99:6494–6504. doi: 10.1016/j.biortech.2007.11.036.
  • Rizzo AM, Prussi M, Bettucci L, et al. Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior. Appl Energy. 2013;102:24–31. doi: 10.1016/j.apenergy.2012.08.039.
  • Miranda MT, Sepúlveda FJ, Arranz JI, et al. Physical-energy characterization of microalgae Scenedesmus and experimental pellets. Fuel. 2018;226(2018):121–126. doi: 10.1016/j.fuel.2018.03.097.
  • Azizi K, Keshavarz Moraveji M, Abedini Najafabadi H. Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA. Bioresour Technol. 2017;243:481–491. doi: 10.1016/j.biortech.2017.06.155.
  • Shuping Z, Yulong W, Mingde Y, et al. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresour Technol. 2010;101:359–365. doi: 10.1016/j.biortech.2009.08.020.
  • Tang Y, Ma X, Lai Z. Thermogravimetric analysis of the combustion of microalgae and microalgae blended with waste in N2/O2 and CO2/O2 atmospheres. Bioresour Technol. 2011;102:1879–1885. doi: 10.1016/j.biortech.2010.07.088.
  • Seo DK, Park SS, Hwang J, et al. Study of the pyrolysis of biomass using thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J Anal Appl Pyrolysis. 2010;89(1):66–73. doi: 10.1016/j.jaap.2010.05.008.
  • Sher F, Iqbal SZ, Liu H, et al. Thermal and kinetic analysis of diverse biomass fuels under different reaction environment: a way forward to renewable energy sources. Energy Convers Manag. 2020;203:112266. doi: 10.1016/j.enconman.2019.112266.
  • Yu KL, Show PL, Ong HC, et al. Microalgae from wastewater treatment to biochar–feedstock preparation and conversion technologies. Energy Convers Manag. 2017;150:1–13.
  • Chiu SJ, Wu YS. A comparative study on thermal and catalytic degradation of polybutylene terephthalate. J Anal Appl Pyrolysis. 2009;86(1):22–27. doi: 10.1016/j.jaap.2009.03.003.
  • Chen WH, Huang MY, Chang JS, et al. Thermal decomposition dynamics and severity of microalgae residues in torrefaction. Bioresour Technol. 2014;169(2014):258–264. doi: 10.1016/j.biortech.2014.06.086.
  • Yang C, Wang C, Li R, et al. Pyrolysis of microalgae: a critical review. Fuel Process Technol. 2019;186:53–72. doi: 10.1016/j.fuproc.2018.12.012.
  • McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresour Technol. 2002;83(1):37–46. doi: 10.1016/S0960-8524(01)00118-3.
  • Chen WH, Wu ZY, Chang JS. Isothermal and non-isothermal torrefaction characteristics and kinetics of microalga Scenedesmus obliquus CNW-N. Bioresour Technol. 2014;155:245–251. doi: 10.1016/j.biortech.2013.12.116.
  • Hosseinizand H, Sokhansanj S, Lim CJ. Co-pelletization of microalgae Chlorella vulgaris and pine sawdust to produce solid fuels. Fuel Process Technol. 2018;177:129–139 . doi: 10.1016/j.fuproc.2018.04.015.
  • Demirbas A, A. Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor Exploit. 2002;20(1):105–111. doi: 10.1260/014459802760170420.
  • Akkaya AV. Proximate analysis based multiple regression models for higher heating value estimation of low rank coals. Fuel Process Technol. 2009;90:165–170. doi: 10.1016/j.fuproc.2008.08.016.
  • Kanda H, Li P, Ikehara T, et al. Lipids extracted from several species of natural blue-green microalgae by dimethyl ether: extraction yield and properties. Fuel. 2012;95:88–92. doi: 10.1016/j.fuel.2011.11.064.
  • Carvill J. Thermodynamics and heat transfer. In: Mechanical engineer’s data handbook. Elsevier; 1993; p. 102–145. Tokyo, Japan: CRC Press. doi: 10.1016/B978-0-08-051135-1.50008-X.
  • Chen WT, Ma J, Zhang Y, et al. Physical pretreatments of wastewater algae to reduce ash content and improve thermal decomposition characteristics. Bioresour Technol. 2014;169:816–820. doi: 10.1016/j.biortech.2014.07.076.
  • Sotoudehniakarani F, Alayat A, McDonald AG. Characterization and comparison of pyrolysis products from fast pyrolysis of commercial Chlorella vulgaris and cultivated microalgae. J Anal Appl Pyrolysis. 2019;139:258–273. doi: 10.1016/j.jaap.2019.02.014.
  • Gan YY, Ong HC, Show PL, et al. Torrefaction of microalgal biochar as potential coal fuel and application as bio-adsorbent. Energy Convers. Manag. 2018;165:152–162. doi: 10.1016/j.enconman.2018.03.046.
  • Suastes-Rivas JK, Hernández-Altamirano R, Mena-Cervantes VY, et al. Biodiesel production, through intensification and profitable distribution of fatty acid methyl esters by a microalgae-yeast coculture, isolated from wastewater as a function of the nutrients’ composition of the culture media. Fuel. 2020;280:118633. doi: 10.1016/j.fuel.2020.118633.
  • Islam MA, Heimann K, Brown RJ. Microalgae biodiesel: current status and future needs for engine performance and emissions. Renew Sustain Energy Rev. 2017;79(2017):1160–1170. doi: 10.1016/j.rser.2017.05.041.
  • Illman AM, Scragg AH, Shales SW. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol. 2000;27(8):631–635. doi: 10.1016/S0141-0229(00)00266-0.
  • Ardiyanti AR, Khromova SA, Venderbosch RH, et al. Catalytic hydrotreatment of fast-pyrolysis oil using non-sulfided bimetallic Ni-Cu catalysts on a δ-Al 2O 3 support. Appl Catal. B Environ. 2012;117–118:105–117. doi: 10.1016/j.apcatb.2011.12.032.
  • Lu Q, Yang XL, Zhu XF. Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk. J Anal Appl Pyrolysis. 2008;82(2):191–198. doi: 10.1016/j.jaap.2008.03.003.
  • Zhang S, Yan Y, Li T, et al. Upgrading of liquid fuel from the pyrolysis of biomass. Bioresour Technol. 2005;96(5):545–550. doi: 10.1016/j.biortech.2004.06.015.
  • Muñoz R, Navia R, Ciudad G, et al. Preliminary biorefinery process proposal for protein and biofuels recovery from microalgae. Fuel. 2015;150(2015):425–433. doi: 10.1016/j.fuel.2015.02.004.
  • Bui HH, Tran KQ, Chen WH. Pyrolysis of microalgae residues - A kinetic study. Bioresour Technol. 2016;199(2015):362–366. doi: 10.1016/j.biortech.2015.08.069.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.