167
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Application of pharmaceutical waste as a heterogeneous catalyst for transesterification of waste cooking oil: biofuel production and its modeling using predictive tools

, , , , &
Pages 415-431 | Received 15 May 2023, Accepted 30 Aug 2023, Published online: 14 Sep 2023

References

  • Windfeld ES, Brooks MSL. Medical waste management - a review. J Environ Manage. 2015;163:98–108. doi: 10.1016/j.jenvman.2015.08.013.
  • Huang W, Li F, Cui SH, et al. Carbon footprint and carbon emission reduction of urban buildings: a case in Xiamen City, China. Proc Eng. 2017;198:1007–1017. doi: 10.1016/j.proeng.2017.07.146.
  • Farabi MSA, Ibrahim ML, Rashid U, et al. Esterification of palm fatty acid distillate using sulfonated carbon-based catalyst derived from palm kernel shell and bamboo. Energy Convers Manag. 2019;181:562–570. doi: 10.1016/j.enconman.2018.12.033.
  • Mahesh SE, Ramanathan A, Begum KMMS, et al. Biodiesel production from waste cooking oil using KBr impregnated CaO as catalyst. Energy Convers Manag. 2015;91:442–450. doi: 10.1016/j.enconman.2014.12.031.
  • Permpool N, Bonnet S, Gheewala SH. Greenhouse gas emissions from land use change due to oil palm expansion in Thailand for biodiesel production. J Clean Prod. 2016;134:532–538. doi: 10.1016/j.jclepro.2015.05.048.
  • Amalia Kartika I, Yani M, Ariono D, et al. Biodiesel production from Jatropha seeds: solvent extraction and in situ transesterification in a single step. Fuel. 2013;106:111–117. doi: 10.1016/j.fuel.2013.01.021.
  • Banković-Ilić IB, Miladinović MR, Stamenković OS, et al. Application of nano CaO–based catalysts in biodiesel synthesis. Renew Sustain Energy Rev. 2017;72:746–760. doi: 10.1016/j.rser.2017.01.076.
  • Arumugam A, Sankaranarayanan P. Biodiesel production and parameter optimization: an approach to utilize residual ash from sugarcane leaf, a novel heterogeneous catalyst, from Calophyllum inophyllum oil. Renew Energy. 2020;153:1272–1282. doi: 10.1016/j.renene.2020.02.101.
  • Costarrosa L, Leiva-Candia DE, Cubero-Atienza AJ, et al. Optimization of the transesterification of waste cooking oil with mg-al hydrotalcite using response surface methodology. Energies. 2018;11(2):302. doi: 10.3390/en11020302.
  • Rezania S, Oryani B, Park J, et al. Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications. Energy Convers Manag. 2019;201:112155. doi: 10.1016/j.enconman.2019.112155.
  • Ratledge C, Cohen Z. Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol. 2008;20(7):155–160. doi: 10.1002/lite.200800044.
  • Tan SX, Lim S, Ong HC, et al. State of the art review on development of ultrasound-assisted catalytic transesterification process for biodiesel production. Fuel. 2019;235:886–907. doi: 10.1016/j.fuel.2018.08.021.
  • Qadariyah L, Ansori A, Wibowo SA, et al. Biodiesel production from calophyllum inophyllum L oil using microwave with calcium carbonate catalyst. IOP Conf Ser: Mater Sci Eng. 2019;543(1):012072. doi: 10.1088/1757-899X/543/1/012072.
  • Birla A, Singh B, Upadhyay SN, et al. Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Bioresour Technol. 2012;106:95–100. doi: 10.1016/j.biortech.2011.11.065.
  • Abdullah SHYS, Hanapi NHM, Azid A, et al. A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renew Sustain Energy Rev. 2017;70:1040–1051. doi: 10.1016/j.rser.2016.12.008.
  • Rizwanul Fattah IM, Ong HC, Mahlia TMI, et al. State of the art of catalysts for biodiesel production. Front Energy Res. 2020;8:1–17. doi: 10.3389/fenrg.2020.00101.
  • Gouran A, Aghel B, Nasirmanesh F. Biodiesel production from waste cooking oil using wheat bran ash as a sustainable biomass. Fuel. 2021;295:120542. doi: 10.1016/j.fuel.2021.120542.
  • Ali B, Yusup S, Quitain AT, et al. Synthesis of novel graphene oxide/bentonite bi-functional heterogeneous catalyst for one-pot esterification and transesterification reactions. Energy Convers Manag. 2018;171:1801–1812. doi: 10.1016/j.enconman.2018.06.082.
  • Lee HV, Juan JC, Yun Hin TY, et al. Environment-friendly heterogeneous alkaline-Based mixed metal oxide catalysts for biodiesel production. Energies. 2016;9(8):611. doi: 10.3390/en9080611.
  • Yan B, Zhang Y, Chen G, et al. The utilization of hydroxyapatite-supported CaO-CeO2catalyst for biodiesel production. Energy Convers Manag. 2016;130:156–164. doi: 10.1016/j.enconman.2016.10.052.
  • Uprety BK, Chaiwong W, Ewelike C, et al. Biodiesel production using heterogeneous catalysts including wood ash and the importance of enhancing byproduct glycerol purity. Energy Convers Manag. 2016;115:191–199. doi: 10.1016/j.enconman.2016.02.032.
  • Ayodeji AA, Ojewumi ME, Rasheed B, et al. Data on CaO and eggshell catalysts used for biodiesel production. Data Brief. 2018;19:1466–1473. doi: 10.1016/j.dib.2018.06.028.
  • Chingakham C, David A, Sajith V. Fe3O4 nanoparticles impregnated eggshell as a novel catalyst for enhanced biodiesel production. Chin J Chem Eng. 2019;27(11):2835–2843. doi: 10.1016/j.cjche.2019.02.022.
  • Ashok A, Kennedy LJ, Vijaya JJ, et al. Optimization of biodiesel production from waste cooking oil by magnesium oxide nanocatalyst synthesized using coprecipitation method. Clean Technol Environ Policy. 2018;20(6):1219–1231. doi: 10.1007/s10098-018-1547-x.
  • Chozhavendhan S, Vijay Pradhap Singh M, Fransila B, et al. A review on influencing parameters of biodiesel production and purification processes. Curr Res Green Sustain Chem. 2020;1-2:1–6. doi: 10.1016/j.crgsc.2020.04.002.
  • Manojkumar N, Muthukumaran C, Sharmila G. A comprehensive review on the application of response surface methodology for optimization of biodiesel production using different oil sources. J King Saud Univ-Eng Sci. 2022;34(3):198–208. doi: 10.1016/j.jksues.2020.09.012.
  • Matheswaran MM, Arjunan TV, Muthusamy S, et al. A case study on thermo-hydraulic performance of jet plate solar air heater using response surface methodology. Case Stud Therm Eng. 2022;34:101983. doi: 10.1016/j.csite.2022.101983.
  • Weremfo A, Abassah‐Oppong S, Adulley F, et al. Response surface methodology as a tool to optimize the extraction of bioactive compounds from plant sources. J Sci Food Agric. 2023;103(1):26–36. doi: 10.1002/jsfa.12121.
  • Dixit S, Mishra G, Yadav VL. Optimization of novel bio-composite packaging film based on alkali-treated hemp fiber/polyethylene/polypropylene using response surface methodology approach. Polym Bull. 2022;79(4):2559–2583. doi: 10.1007/s00289-021-03646-5.
  • Veza I, Spraggon M, Fattah IR, et al. Response surface methodology (RSM) for optimizing engine performance and emissions fueled with biofuel: review of RSM for sustainability energy transition. Results Eng. 2023;18:101213. doi: 10.1016/j.rineng.2023.101213.
  • Wang JL, Wan W. Optimization of fermentative hydrogen production process using genetic algorithm based on neural network and response surface methodology. Int J Hydrog Energy. 2009;34(1):255–261. doi: 10.1016/j.ijhydene.2008.10.010.
  • Sewsynker Y, Gueguim Kana EB, Lateef A. Modelling of biohydrogen generation in microbial electrolysis cells (MECs) using a committee of artificial neural networks (ANNs). Biotechnol Biotechnol Equip. 2015;29(6):1208–1215. doi: 10.1080/13102818.2015.1062732.
  • Samuel OD, Kaveh M, Oyejide OJ, et al. Performance comparison of empirical model and particle swarm optimization & its boiling point prediction models for waste sunflower oil biodiesel. Case Stud Therm Eng. 2022;33:101947. doi: 10.1016/j.csite.2022.101947.
  • Güner ŞT, Diamantopoulou MJ, Poudel KP, et al. Employing artificial neural network for effective biomass prediction: an alternative approach. Comput Electron Agric. 2022;192:106596. doi: 10.1016/j.compag.2021.106596.
  • Borah MJ, Das A, Das V, et al. Transesterification of waste cooking oil for biodiesel production catalyzed by Zn substituted waste egg shell derived CaO nanocatalyst. Fuel. 2019;242:345–354. doi: 10.1016/j.fuel.2019.01.060.
  • Dong H, Yang EH, Unluer C, et al. Investigation of the properties of MgO recovered from reject brine obtained from desalination plants. J Cleaner Prod. 2018;196:100–108. doi: 10.1016/j.jclepro.2018.06.032.
  • AbdelDayem HM, Salib BG, El-Hosiny FI. Facile synthesis of hydrothermal stable hierarchically macro-mesoporous hollow microspheres γ-Al2O3-graphene oxide composite: as a new efficient acid-base catalyst for transesterification reaction for biodiesel production. Fuel. 2020;277:118106. doi: 10.1016/j.fuel.2020.118106.
  • Rahman WU, Fatima A, Anwer AH, et al. Biodiesel synthesis from eucalyptus oil by utilizing waste egg shell derived calcium based metal oxide catalyst. Process Saf Environ Prot. 2019;122:313–319. doi: 10.1016/j.psep.2018.12.015.
  • Mohamed RM, Kadry GA, Abdel-Samad HA, et al. High operative heterogeneous catalyst in biodiesel production from waste cooking oil. Egypt J Pet. 2020;29(1):59–65. doi: 10.1016/j.ejpe.2019.11.002.
  • de Oliveira LG, de Paiva AP, Balestrassi PP, et al. Response surface methodology for advanced manufacturing technology optimization: theoretical fundamentals, practical guidelines, and survey literature review. Int J Adv Manuf Technol. 2019;104(5–8):1785–1837. doi: 10.1007/s00170-019-03809-9.
  • Khuri AI, Mukhopadhyay S. Response surface methodology. WIREs Comp Stat. 2010;2(2):128–149. doi: 10.1002/wics.73.
  • Gupta S, Patel P, Mondal P. Biofuels production from pine needles via pyrolysis: process parameters modeling and optimization through combined RSM and ANN based approach. Fuel. 2022;310:122230. doi: 10.1016/j.fuel.2021.122230.
  • Simsek S, Uslu S, Simsek H. Proportional impact prediction model of animal waste fat-derived biodiesel by ANN and RSM technique for diesel engine. Energy. 2022;239:122389. doi: 10.1016/j.energy.2021.122389.
  • Olatunji KO, Ahmed NA, Madyira DM, et al. Performance evaluation of ANFIS and RSM modeling in predicting biogas and methane yields from arachis hypogea shells pretreated with size reduction. Renew Energy. 2022;189:288–303. doi: 10.1016/j.renene.2022.02.088.
  • Sayyad Amin J, Rajabi Kuyakhi H, Kashiwao T, et al. Development of ANFIS models for polycyclic aromatic hydrocarbons (PAHs) formation in sea sediment. Pet Sci Technol. 2019;37(6):679–686. doi: 10.1080/10916466.2018.1563613.
  • Rajabi Kuyakhi H, Zarenia O, Tahmasebi Boldaji R. Hybrid intelligence methods for modeling the diffusivity of light hydrocarbons in bitumen. Heliyon. 2020;6(9):e04936. doi: 10.1016/j.heliyon.2020.e04936.
  • Kardani N, Bardhan A, Samui P, et al. A novel technique based on the improved firefly algorithm coupled with extreme learning machine (ELM-IFF) for predicting the thermal conductivity of soil. Eng Comput. 2022;38(4):3321–3340. doi: 10.1007/s00366-021-01329-3.
  • Peng H, Xiao W, Han Y, et al. Multi-strategy firefly algorithm with selective ensemble for complex engineering optimization problems. Appl Soft Comput. 2022;120:108634. doi: 10.1016/j.asoc.2022.108634.
  • Correia LM, Saboya RMA, de Sousa Campelo N, et al. Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil. Bioresour Technol. 2014;151:207–213. doi: 10.1016/j.biortech.2013.10.046.
  • Kandiban M, Vigneshwaran P, Potheher VI. Synthesis and characterization of mgo nanoparticles for photocatalytic. In: Conference. 2015. p. 1–5.
  • Balakrishnan G, Velavan R, Mujasam Batoo K, et al. Microstructure, optical and photocatalytic properties of MgO nanoparticles. Results Phys. 2020;16:103013. doi: 10.1016/j.rinp.2020.103013.
  • Balamurugan S, Ashna L, Parthiban P. Synthesis of nanocrystalline MgO particles by combustion followed by annealing method using hexamine as a fuel. J Nanotechnol. 2014;2014:1–6. doi: 10.1155/2014/841803.
  • Selvam NCS, Kumar RT, Kennedy LJ, et al. Comparative study of microwave and conventional methods for the preparation and optical properties of novel MgO-micro and nano-structures. J Alloys Compd. 2011;509(41):9809–9815. doi: 10.1016/j.jallcom.2011.08.032.
  • Ferraz E, Gamelas JAF, Coroado J, et al. Recycling waste seashells to produce calcitic lime: characterization and wet slaking reactivity. Waste Biomass Valor. 2019;10(8):2397–2414. doi: 10.1007/s12649-018-0232-y.
  • Mirghiasi Z, Bakhtiari F, Darezereshki E, et al. Preparation and characterization of CaO nanoparticles from Ca(OH)2 by direct thermal decomposition method. J Ind Eng Chem. 2014;20(1):113–117. doi: 10.1016/j.jiec.2013.04.018.
  • Zik NAFA, Sulaiman S, Jamal P. Biodiesel production from waste cooking oil using calcium oxide/nanocrystal cellulose/polyvinyl alcohol catalyst in a packed bed reactor. Renew Energy. 2020;155:267–277. doi: 10.1016/j.renene.2020.03.144.
  • Selvamani T, Sinhamahapatra A, Bhattacharjya D, et al. Rectangular MgO microsheets with strong catalytic activity. Mater Chem Phys. 2011;129(3):853–861. doi: 10.1016/j.matchemphys.2011.05.055.
  • Kumar D, Ali A. Nanocrystalline K-CaO for the transesterification of a variety of feedstocks: structure, kinetics and catalytic properties. Biomass Bioenergy. 2012;46:459–468. doi: 10.1016/j.biombioe.2012.06.040.
  • Adelkhani H, Ghaemi M, Ruzbehani M. Evaluation of the porosity and the nano-structure morphology of MnO2 prepared by pulse current electrodeposition. Int J Electrochem Sci. 2011;6(1):123–135. doi: 10.1016/S1452-3981(23)14980-7.
  • Tahmasebi-Boldaji R, Hatamipour MS, Khanahmadi M, et al. Ultrasound-assisted packed-bed extraction of hypericin from hypericum perforatum L. and optimization by response surface methodology. Ultrason Sonochem. 2019;57:89–97. doi: 10.1016/j.ultsonch.2019.05.018.
  • Tahmasebi Boldaji R, Rajabi Kuyakhi H, Tahmasebi Boldaji N, et al. A comparative study of mathematical and ANFIS models to determine the effect of ultrasonic waves on the viscosity of crude oil. Pet Sci Technol. 2022;40(2):150–165. doi: 10.1080/10916466.2021.1990320.
  • Tahmasebi Boldaji R, Rajabi Kuyakhi H, Boldaji NT. Prediction of 1-butanol and diesel fuel blend heat capacity by response surface methodology. Pet Sci Technol. 2020;38(11):737–743. doi: 10.1080/10916466.2020.1776325.
  • Fratoddi I, Rapa M, Testa G, et al. Response surface methodology for the optimization of phenolic compounds extraction from extra virgin olive oil with functionalized gold nanoparticles. Microchem J. 2018;138:430–437. doi: 10.1016/j.microc.2018.01.043.
  • Liu J, Wang J, Leung C, et al. A multi-parameter optimization model for the evaluation of shale gas recovery enhancement. Energies. 2018;11(3):654. doi: 10.3390/en11030654.
  • Sayyad Amin J, Rajabi Kuyakhi H, Bahadori A. Prediction of formation of polycyclic aromatic hydrocarbon (PAHs) on sediment of caspian sea using artificial neural networks. Pet Sci Technol. 2019;37(18):1987–2000. doi: 10.1080/10916466.2018.1496111.
  • Mostafaei M, Javadikia H, Naderloo L. Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS). Energy. 2016;115:626–636. doi: 10.1016/j.energy.2016.09.028.
  • Esfahanian M, Nikzad M, Najafpour G, et al. Modeling and optimization of ethanol fermentation using Saccharomyces cerevisiae: response surface methodology and artificial neural network. CI&CEQ. 2013;19(2):241–252. doi: 10.2298/CICEQ120210058E.
  • Farobie O, Hasanah N, Matsumura Y. Artificial neural network modeling to predict biodiesel production in supercritical methanol and ethanol using spiral reactor. Procedia Environ Sci. 2015;28:214–223.
  • Qdais HA, Hani KB, Shatnawi N. Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resour Conserv Recycl. 2010;54(6):359–363. doi: 10.1016/j.resconrec.2009.08.012.
  • Roschat W, Siritanon T, Yoosuk B, et al. Rubber seed oil as potential non-edible feedstock for biodiesel production using heterogeneous catalyst in Thailand. Renew Energy. 2017;101:937–944. doi: 10.1016/j.renene.2016.09.057.
  • Kumar S, Shamsuddin MR, Farabi MSA, Saiman MI, Zainal Z, Taufiq-Yap YH. Production of methyl esters from waste cooking oil and chicken fat oil via simultaneous esterification and transesterification using acid catalyst, Energy Convers Manag. 226 (2020) 113366. doi: 10.1016/j.enconman.2020.113366.
  • Alhassan FH, Rashid U, Taufiq-Yap YH. Synthesis of waste cooking oil-based biodiesel via effectual recyclable bi-functional Fe2O3MnOSO42-/ZrO2 nanoparticle solid catalyst. Fuel. 2015;142:38–45. doi: 10.1016/j.fuel.2014.10.038.
  • Sandouqa A, Al-Hamamre Z, Asfar J. Preparation and performance investigation of a lignin-based solid acid catalyst manufactured from olive cake for biodiesel production. Renew Energy. 2019;132:667–682. doi: 10.1016/j.renene.2018.08.029.
  • Bhatia SK, Gurav R, Choi TR, et al. Conversion of waste cooking oil into biodiesel using heterogenous catalyst derived from Cork biochar. Bioresour Technol. 2020;302:122872. doi: 10.1016/j.biortech.2020.122872.
  • Sahabdheen AB, Arivarasu A. Synthesis and characterization of reusable heteropoly acid nanoparticles for one step biodiesel production from high acid value waste cooking oil - Performance and emission studies. Mater Today Proc. 2020;22:383–392. doi: 10.1016/j.matpr.2019.07.249.
  • Borah MJ, Devi A, Borah R, et al. Synthesis and application of Co doped ZnO as heterogeneous nanocatalyst for biodiesel production from non-edible oil. Renew Energy. 2019;133:512–519. doi: 10.1016/j.renene.2018.10.069.
  • Boro J, Konwar LJ, Deka D. Transesterification of non edible feedstock with lithium incorporated egg shell derived CaO for biodiesel production. Fuel Process Technol. 2014;122:72–78. doi: 10.1016/j.fuproc.2014.01.022.
  • Jamil F, Al-Muhatseb AH, Myint MTZ, et al. Biodiesel production by valorizing waste phoenix dactylifera L. Kernel oil in the presence of synthesized heterogeneous metallic oxide catalyst (Mn@MgO-ZrO2). Energy Convers Manag. 2018;155:128–137. doi: 10.1016/j.enconman.2017.10.064.
  • Thirumarimurugan M, Sivakumar VM, Xavier AM, et al. Preparation of biodiesel from sunflower oil by transesterification. Int J Biosci Biochem Bioinf. 2012;2(6):441–444. doi: 10.7763/IJBBB.2012.V2.151.
  • Gashaw A, Teshita A. Production of biodiesel from waste cooking oil and factors affecting its formation: a review. Int J Sustain Green Energy. 2014;3:92–98. doi: 10.11648/j.ijrse.20140305.12.
  • Mahmood Khan H, Iqbal T, Haider Ali C, et al. Sustainable biodiesel production from waste cooking oil utilizing waste ostrich (Struthio camelus) bones derived heterogeneous catalyst. Fuel. 2020;277:118091. doi: 10.1016/j.fuel.2020.118091.
  • Theam KL, Islam A, Lee HV, et al. Sucrose-derived catalytic biodiesel synthesis from low-cost palm fatty acid distillate. Process Saf Environ Prot. 2015;95:126–135. doi: 10.1016/j.psep.2015.02.017.
  • Seffati K, Honarvar B, Esmaeili H, et al. Enhanced biodiesel production from chicken fat using CaO/CuFe2O4 nanocatalyst and its combination with diesel to improve fuel properties. Fuel. 2019;235:1238–1244. doi: 10.1016/j.fuel.2018.08.118.
  • Ghalandari A, Taghizadeh M, Rahmani M. Statistical optimization of the biodiesel production process using a magnetic Core-Mesoporous shell KOH/Fe3O4@γ-Al2O3 nanocatalyst. Chem Eng Technol. 2019;42(1):89–99. doi: 10.1002/ceat.201700658.
  • Bayat A, Baghdadi M, Bidhendi GN. Tailored magnetic nano-alumina as an efficient catalyst for transesterification of waste cooking oil: optimization of biodiesel production using response surface methodology. Energy Convers Manag. 2018;177:395–405. doi: 10.1016/j.enconman.2018.09.086.
  • Eliassi A, Ranjbar M. Application of novel gamma alumina nano structure for preparation of dimethyl ether from methanol. Int J Nanosci Nanotechnol. 2014;10:13–26. http://www.ijnnonline.net/pdf_5021_4e4d8876cbdf40334f093204976e8266.html%5Cnhttp://www.ijnnonline.net/article_5021_1017.html.
  • Cai W, Yu J, Mann S. Template-free hydrothermal fabrication of hierarchically organized γ-AlOOH hollow microspheres. Microporous Mesoporous Mater. 2009;122(1-3):42–47. doi: 10.1016/j.micromeso.2009.02.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.