58
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Bacterial community issued from a Chlorophytum plant-microbial fuel cell for electricity generation

ORCID Icon, , , , , , , & show all
Pages 495-504 | Received 25 Apr 2023, Accepted 18 Sep 2023, Published online: 25 Sep 2023

References

  • Aelterman, Peter, Rabaey, Korneel, Pham, Hai The, Boon, Nico. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol. 2006;40(110):3388–3394. doi:10.1021/es0525511.
  • Logan BE. Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments. ChemSusChem. 2012;5(6):988–994. doi:10.1002/cssc.201100604.
  • Oh SE, Kim JR, Joo JH, et al. Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells. Water Sci Technol. 2009;60(5):1311–1317. doi:10.2166/wst.2009.444.
  • Kato Marcus A, Torres CI, Rittmann BE. Conduction‐based modeling of the biofilm anode of a microbial fuel cell. Biotechnol Bioeng. 2007;98(6):1171–1182. doi:10.1002/bit.21533.
  • Schröder U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys. 2007;9(21):2619–2629. doi:10.1039/b703627m.
  • Salvin P, Roos C, Robert F. Tropical mangrove sediments as a natural inoculum for efficient electroactive biofilms. Bioresour Technol. 2012;120:45–51. doi:10.1016/j.biortech.2012.05.131.
  • Modestra J, Reddy C, Krishna K, et al. Regulated surface potential impacts bioelectrogenic activity, interfacial electron transfer and microbial dynamics in microbial fuel cell. Renew Energy. 2020;149:424–434. doi:10.1016/j.renene.2019.12.018.
  • Azri YM, Tou I, Sadi M, et al. Bioelectricity generation from three ornamental plants: Chlorophytum comosum, Chasmanthe floribunda and Papyrus diffusus. Int J Green Energy. 2018;15(4):254–263. doi:10.1080/15435075.2018.1432487.
  • Tou I, Azri YM, Sadi M, et al. Chlorophytum microbial fuel cell characterization. Int J Green Energy. 2019;16(12):947–959. doi:10.1080/15435075.2019.1650049.
  • Tou I, Azri Y, Sadi M, et al. Chlorophytum rhizosphere, a suitable environment for electroactive biofilm development. Biomass Conv Bioref. 2021;11(6):2457–2469. doi:10.1007/s13399-020-00615-2.
  • Amies CR. A modified formula for the preparation of Stuart’s transport medium. Can J Public Health/Revue Canadienne de Sante’e Publique. 1967;58(17):296–300.
  • Thompson D, French S. Comparison of commercial Amies transport systems with in-house Amies medium for recovery of Neisseria gonorrhoeae. J Clin Microbiol. 1999;37(9):3020–3021. doi:10.1128/JCM.37.9.3020-3021.1999.
  • Garrigues ML, Véron M. Gas-liquid chromatography in microbiological diagnosis. Ann Biol Clin (Paris). 1987;45(2):135–143.
  • Lanser A, Manthey L, Hou C. Regioselectivity of new bacterial lipases determined by hydrolysis of triolein. Curr Microbiol. 2002;44(5):336–340. doi:10.1007/s00284-001-0019-3.
  • Dorner W, Demont P. «Recherches sur le procédé Burri de numération bactérienne par stries (Suite). Lait. 1931;11(110):1005–1021. doi:10.1051/lait:193111038.
  • Ghouati Y, Belaiche T, Ouhssine M, et al. Antimicrobial property of the essential oil from the Moroccan fennel fruits. Br J Biol Health Med Res. 2014;1:25–33.
  • Sevda S, Sreekrishnan TR. Effect of salt concentration and mediators in salt bridge microbial fuel cell for electricity generation from synthetic wastewater. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2012;47(6):878–886. doi:10.1080/10934529.2012.665004.
  • Andrade N, Et Arismendi N. DAPI staining and fluorescence microscopy techniques for phytoplasmas. Totowa (NJ): Humana Press; 2013, p. 115–121.
  • Dong XZ, Cai MY. Identification manual of systematic bacteriology. 2001, p. 267–294.
  • Butterworth LA, Perry JD, Davies G., Burton M, Reed RH, Gould FK. Evaluation of novel β‐ribosidase substrates for the differentiation of gram‐negative bacteria. J Appl Microbiol. 2004;96(1):170–176. doi:10.1046/j.1365-2672.2003.02130.x.
  • Kolbert CP, Persing DH. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr Opin Microbiol. 1999;2(3):299–305. doi:10.1016/S1369-5274(99)80052-6.
  • James G. Universal bacterial identification by PCR and DNA sequencing of 16S rRNA gene. In PCR for clinical microbiology Dordrecht: Springer; 2010, p. 209–214.
  • Dashti A, Jadaon M, Abdulsamad A, et al. Heat treatment of bacteria: a simple method of DNA extraction for molecular techniques. Kuwait Med J. 2009;41(12):117–122.
  • Rose HL, Dewey CA, Ely MS, et al. Comparison of eight methods for the extraction of Bacillus atrophaeus spore DNA from eleven common interferents and a common swab. PLoS One. 2011;6(7):e22668. doi:10.1371/journal.pone.0022668.
  • Lane DJ1. 16S/23S rRNA sequencing. In Stackbrandt E, Goodfelow M, editor. Nucleic acid techniques in bacterial systematics, Chichester, United Kingdom: John Wiley and Sons; 1991, p. 115–175.
  • Frank J, Reich C, Sharma S, et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol. 2008;74(8):2461–2470. doi:10.1128/AEM.02272-07.
  • Chen Y, Lee C, Lin YL, et al. Obtaining long 16S rDNA sequences using multiple primers and its application on dioxin-containing samples. BMC Bioinf. 2015;16(S15):1–11. doi:10.1186/1471-2105-16-S15-P1.
  • Sanchez-Cespedes J, Blasco M, Marti S, et al. Plasmid-mediated QnrS2 determinant from a clinical Aeromonas veronii isolate. Antimicrob Agents Chemother. 2008;52(8):2990–2991. doi:10.1128/AAC.00287-08.
  • Goodstadt L, Ponting CP. CHROMA: consensus-based colouring of multiple alignments for publication. Bioinformatics. 2001;17(9):845–846. doi:10.1093/bioinformatics/17.9.845.
  • Burland TG. DNASTAR’s Lasergene sequence analysis software. In: Bioinformatics methods and protocols. Totowa (NJ): Humana Press; 2000, p. 71–91.
  • Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402. doi:10.1093/nar/25.17.3389.
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–425.
  • Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–1549. doi:10.1093/molbev/msy096.
  • Prescott LM, Harley PJ, Klein D, Woolverton C, Willey J, Sherwood L. De Boeck Supérieur. 2010. From Vaci (Lewes, DE, U.S.A)
  • Liu H, Cheng S, Logan B. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental science & technology. Environ Sci Technol. 2005;39(2):658–662. doi:10.1021/es048927c.
  • Liu T, Yu YY, Chen T, et al. A synthetic microbial consortium of Shewanella and Bacillus for enhanced generation of bioelectricity. Biotechnol Bioeng. 2017;114(3):526–532. doi:10.1002/bit.26094.
  • Cercado-Quezada B, Delia M, Bergel A. Electrochemical micro-structuring of graphite felt electrodes for accelerated formation of electroactive biofilms on microbial anodes. Electrochem Commun. 2011;13(5):440–443. doi:10.1016/j.elecom.2011.02.015.
  • Lovley DR, Ferry JG. Production and consumption of H2 during growth of Methanosarcina spp. on acetate. Appl Environ Microbiol. 1985;49(1):247–249. doi:10.1128/aem.49.1.247-249.1985.
  • Petersen SP, Ahring BK. Acetate oxidation in a thermophilic anaerobic sewage-sludge digestor: the importance of non-aceticlastic methanogenesis from acetate. FEMS Microbiol Lett. 1991;86(2):149–158. doi:10.1111/j.1574-6968.1991.tb04804.x.
  • Falony G, Vlachou A, Verbrugghe K, et al. Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol. 2006;72(12):7835–7841. doi:10.1128/AEM.01296-06.
  • Lee J, Phung NT, Chang IS, et al. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol Lett. 2003;223(2):185–191. doi:10.1016/S0378-1097(03)00356-2.
  • Logan B, Regan J. Microbial fuel cells—challenges and applications. Environ Sci Technol. 2006;40(17):5172–5180. doi:10.1021/es0627592.
  • Choo YF, Lee JY, Chang IS, et al. Bacterial communities in microbial fuel cells enriched with high concentrations of glucose and glutamate. J Microbiol Biotechnol. 2006;16(9):1481–1484.
  • Rabaey K, Boon N, Höfte M, et al. Microbial phenazine production enhances electron transfer in biofuel cells. 2005;9:3401–3408. doi:10.1021/es048563o.
  • Drider D, Prévost H. Bactéries lactiques: physiologie,métabolisme, génomique et applications industrielles. Paris: Economica; 2009. p. 256. doi: 10.1007/10_207-5001.
  • Freguia S, Rabaey K, Yuan Z, et al. Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ Sci Technol. 2008;42(21):7937–7943. doi:10.1021/es800482e.
  • Xing D, Cheng S, Regan J, et al. Change in microbial communities in acetate- and glucose-fed microbial fuel cells in the presence of light. Biosens Bioelectron. 2009;25(1):105–111. doi:10.1016/j.bios.2009.06.013.
  • Kokko ME, Mäkinen AE, Puhakka JA. Anaerobes in bioelectrochemical systems. In: Hatti-Kaul, R, Mamo, G, Mattiasson, B. editor. Anaerobes in Biotechnology. Advances in Biochemical Engineering/Biotechnology; 2016:263–292. doi: 10.1007/10_2015-5001
  • Claverys JP, Martin B, Polard P. The genetic transformation machinery: composition, localization, and mechanism. FEMS Microbiol Rev. 2009;33(3):643–656. doi:10.1111/j.1574-6976.2009.00164.x.
  • Torres CI, Krajmalnik-Brown R, Parameswaran P, et al. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization. Environ Sci Technol. 2009;43(24):9519–9524. doi:10.1021/es902165y.
  • Belleville P, Merlin G, Ramousse J, et al. Characterization of spatiotemporal electroactive anodic biofilm activity distribution using 1D simulations. Sci Rep. 2022;12(1):5849. doi:10.1038/s41598-022-09596-w.
  • Yi H, Nevin KP, Kim BC, et al. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens Bioelectron. 2009;24(12):3498–3503. doi:10.1016/j.bios.2009.05.004.
  • Logan BE, Rossi R, Ragab AA, et al. Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microbiol. 2019;17(5):307–319. doi:10.1038/s41579-019-0173-x.
  • Kootallur BN, Thangavelu C, Mani M. Bacterial identification in the diagnostic laboratory: how much is enough? Indian J Med Microbiol. 2011;29(4):336–340. doi:10.4103/0255-0857.90156.
  • Devanga Ragupathi NK, Veeraraghavan B. Accurate identification and epidemiological characterization of Burkholderia cepacia complex: an update. Ann Clin Microbiol Antimicrob. 2019;18(1):7. doi:10.1186/s12941-019-0306-0.
  • Zuo Y, Xing D, Regan JM, et al. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl Environ Microbiol. 2008;74(10):3130–3137. doi:10.1128/AEM.02732-07.
  • Rathinam NK, Salem DR, Sani RK. Biofilm engineering for improving the performance of microbial electrochemical technologies. Microbial Electrochem Technol. 2019:315–338. doi: 10.1016/13978-0-444-64052-9.00012-1.
  • Bieber D, Ramer SW, Wu CY, et al. Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science. 1998;280(5372):2114–2118. doi:10.1126/science.280.5372.2114.
  • Pedersen MB, Gaudu P, Lechardeur D, et al. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annu Rev Food Sci Technol. 2012;3(1):37–58. doi:10.1146/annurev-food-022811-101255.
  • Kessler AJ, Chen YJ, Waite DW, et al. Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments. Nat Microbiol. 2019;4(6):1014–1023. doi:10.1038/s41564-019-0391-z.
  • Jung S, Regan JM. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biotechnol. 2007;77(2):393–402. doi:10.1007/s00253-007-1162-y.
  • Kim JR, Jung SH, Regan JM, et al. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour Technol. 2007;98(13):2568–2577. doi:10.1016/j.biortech.2006.09.036.
  • Kim B, Park H, Kim H, et al. Enrichment of microbial community generating electricity using a fuel-cell type electrochemical cell. Appl Microbiol Biotechnol. 2004;63(6):672–681. doi:10.1007/s00253-003-1412-6.
  • Kim G, Webster G, Wimpenny J, et al. Bacterial community structure, compartmentalization and activity in amicrobial fuel cell. J Appl Microbiol. 2006;101(3):698–710. doi:10.1111/j.1365-2672.2006.02923.x.
  • Nimje VR, Chen CY, Chen CC, et al. Microbial fuel cell of Enterobacter cloacae: effect of anodic pH microenvironment on current, power density, internal resistance and electrochemical. Int J Hydrogen Energy. 2011;36(17):11093–11101. doi:10.1016/j.ijhydene.2011.05.159.
  • Zhao G, Ma F, Wei L, et al. Electricity generation from cattle dung using microbial fuel cell technology during anaerobic acidogenesis and the development of microbial populations. Waste Manag. 2012;32(9):1651–1658. doi:10.1016/j.wasman.2012.04.013.
  • Zhao J, Li F, Cao Y, et al. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms. Biotechnol Adv. 2021;53:107682. doi:10.1016/j.biotechadv.2020.107682.
  • Kimura ZI, Okabe S. Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen. Isme J. 2013;7(8):1472–1482. doi:10.1038/ismej.2013.40.
  • Zhang T, Cui C, Chen S, et al. The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell. Electrochem Commun. 2008;10(2):293–297. doi:10.1016/j.elecom.2007.12.009.
  • Masih SA, Devasahayam M, Srivastava R, et al. Enterobacter species specific microbial fuel cells show increased power generation with high coulombic efficiency. Trends Biosci. 2012;5:114–118.
  • Shimoyama T, Komukai S, Yamazawa A, et al. Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell. Appl Microbiol Biotechnol. 2008;80(2):325–330. doi:10.1007/s00253-008-1516-0.
  • Lapinsonnière L. Contribution à l‘évaluation et à l‘optimisation des application des systèmes microbio-électrochimiques: traitement des eaux, production d‘électricité, bioélectrosynthèse. (doctoral dissertation, Rennes 1-France). 2013.
  • Conners EM, Rengasamy K, Bose A. Electroactive biofilms: how microbial electron transfer enables bioelectrochemical applications. J Ind Microbiol Biotechnol. 2022;49(4):Kuac012. doi:10.1093/jimb/kuac012.
  • Svensäter G, Bergenholtz G. Biofilms in endodontic infections. Endodontic Topics. 2004;9(1):27–36. doi:10.1111/j.1601-1546.2004.00112.x.
  • Moqsud M, Omine K, Yasufuku N, et al. Bioelectricity from kitchen and bamboo waste in a microbial fuel cell. Waste Manag Res. 2014;32(2):124–130. doi:10.1177/0734242X13517160.
  • Chu N, Zhang L, Hao W, et al. Rechargeable microbial fuel cell based on bidirectional extracellular electron transfer. Bioresour Technol. 2021;329:124887. doi:10.1016/j.biortech.2021.124887.
  • Park HS, Kim BH, Kim HS, et al. A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe. 2001;7(6):297–306. doi:10.1006/anae.2001.0399.
  • Compton RG, Perkin SJ, Gamblin DP, et al. Clostridium isatidis colonised carbon electrodes: voltammetric evidence for direct solid state redox processes. New J. Chem. 2000;24(3):179–181. doi:10.1039/a909172f.
  • Jiang YB, Zhong WH, Han C, et al. Characterization of electricity generated by soil in microbial fuel cells and the isolation of soil source exoelectrogenic bacteria. Front Microbiol. 2016;7:1776. doi:10.3389/fmicb.2016.01776.
  • Ketep S, Fourest E, Bergel A. Experimental and theoretical characterization of microbial bioanodes formed in pulp and paper mill effluent in electrochemically controlled conditions. Bioresour Technol. 2013;149:117–125. doi:10.1016/j.biortech.2013.09.025.
  • Parot S, Nercessian O, Delia M-L, et al. Electrochemical checking of aerobic isolates from electrochemically active biofilms formed in compost. J Appl Microbiol. 2009;106(4):1350–1359. doi:10.1111/j.1365-2672.2008.04103.x.
  • Zhang TZL, Su W, Gao P, et al. The direct electrocatalysis of phenazine-1-carboxylic acid excreted by Pseudomonas alcaliphila under alkaline condition in microbial fuel cells. Bioresour Technol. 2011;102(14):7099–7102. doi:10.1016/j.biortech.2011.04.093.
  • Sacco NJ, Figuerola EL, Pataccini G, et al. Performance of planar and cylindrical carbon electrodes at sedimentary microbial fuel cells. Bioresour Technol. 2012;126:328–335. doi:10.1016/j.biortech.2012.09.060.
  • Feng C, Li J, Qin D, et al. Characterization of exoelectrogenic bacteria Enterobacter strains isolated from a microbial fuel cell exposed to copper shock load. PLoS One. 2014;9(11):e113379. doi:10.1371/journal.pone.0113379.
  • Rezaei F, Xing D, Wagner R, et al. Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol. 2009;75(11):3673–3678. doi:10.1128/AEM.02600-08.
  • Jin M, Wang Y, Huang M, et al. Sulphation can enhance the antioxidant activity of polysaccharides produced by Enterobacter cloacae Z0206. Carbohydr Polym. 2014;99:624–629. doi:10.1016/j.carbpol.2013.08.072.
  • Mohan S, Saravanan R, Raghavulu S, et al. Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: effect of catholyte. Bioresour Technol. 2008;99(3):596–603. doi:10.1016/j.biortech.2006.12.026.
  • Qiao Y-J, Qiao Y, Zou L, et al. Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines. Bioelectrochemistry. 2017;117:34–39. doi:10.1016/j.bioelechem.2017.04.003.
  • Boon N, Aelterman P, Clauwaert P, et al. Metabolites produced by Pseudomonas sp. enable a gram-positive bacterium to achieve extracellular electron transfer. Applied microbiology. Appl Microbiol Biotechnol. 2008;77(5):1119–1129. doi:10.1007/s00253-007-1248-6.
  • Wang YR, Li KW, Wang YX, et al. Nutrient limitation regulates the properties of extracellular electron transfer and hydraulic shear resistance of electroactive biofilm. Environ Res. 2022;212(Pt C):113408. doi:10.1016/j.envres.2022.113408.
  • Dietrich L, Price‐Whelan A, Petersen A, et al. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol. 2006;61(5):1308–1321. doi:10.1111/j.1365-2958.2006.05306.x.
  • Saunders S, Edmund CYM, Otero F, et al. Extracellular DNA promotes efficient extracellular electron transfer by pyocyanin in Pseudomonas aeruginosa biofilms. Cell. 2020;182(4):919–932.e19. doi:10.1016/j.cell.2020.07.006.
  • Franco A, Elbahnasy M, Rosenbaum MA. Screening of natural phenazine producers for electroactivity in bioelectrochemical systems. Microb Biotechnol. 2023;16(3):579–594. doi:10.1111/1751-7915.14199.
  • Zhang RC, Chen C, Shao B, et al. Heterotrophic sulfide-oxidizing nitrate-reducing bacteria enables the high performance of integrated autotrophic-heterotrophic denitrification (IAHD) process under high sulfide loading. Water Res. 2020;178:115848. doi:10.1016/j.watres.2020.115848.
  • Wang X, Yu P, Zeng C, et al. Enhanced denitrification rate of Alcaligenes faecalis with electrode as electron donor. Appl Environ Microbiol. 2015;81(16):5387–5394. doi:10.1128/AEM.00683-15.
  • Yu L, Yuan Y, Rensing C, et al. Combined spectroelectrochemical and proteomic characterizations of bidirectional Alcaligenes faecalis-electrode electron transfer. Biosens Bioelectron. 2018;106:21–28. doi:10.1016/j.bios.2018.01.032.
  • Pham CA, Jung SJ, Phung NT, et al. A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett. 2003;223(1):129–134. doi:10.1016/S0378-1097(03)00354-9.
  • Conley B, Intile P, Bond D, et al. Divergent Nrf family proteins and MtrCAB homologs facilitate extracellular electron transfer in Aeromonas hydrophila. Appl Environ Microbiol. 2018;84(23):e-02134-18. doi:10.1128/AEM.02134-18.
  • Pankratova G, Gorton L. Electrochemical communication between living cells and conductive surfaces. Curr Opin Electrochem. 2017;5(1):193–202. doi:10.1016/j.coelec.2017.09.013.
  • Pankratova G, Leech D, Gorton L, et al. Extracellular electron transfer by the gram-positive bacterium Enterococcus faecalis. Biochemistry. 2018;57(30):4597–4603. doi:10.1021/acs.biochem.8b00600.
  • Hederstedt L, Gorton L, Pankratova G. Two routes for extracellular electron transfer in Enterococcus faecalis. J Bacteriol. 2020;202(7). doi:10.1128/JB.00725-19.
  • Wu LC, Tsai TH, Liu MH, et al. A green microbial fuel cell-based biosensor for in situ chromium (VI) measurement in electroplating wastewater. Sensors. 2017;17(11):2461. doi:10.3390/s17112461.
  • Cabezas DaRosa A. Diversity and function of the microbial community on anodes of sediment microbial fuel cells fueled by root exudates. Philipps-Universitat Marbourg; 2010. doi: 10.17192/2-2010.0642.
  • Nawaz A, Hafeez A, Abbas SZ, et al. A state of the art review on electron transfer mechanisms, characteristics, applications and recent advancements in microbial fuel cells technology. Green Chem Lett Rev. 2020;13(4):365–381. doi:10.1080/17518253.2020.1854871.
  • Haddour N, Azri YM. Recent advances on electrochemical sensors based on electroactive bacterial systems for toxicant monitoring: a mini review. Electroanalysis. 2022;35(1). doi:10.1002/elan.202200202.
  • Zulkifli SN, Rahim HA, Lau WJ. Detection of contaminants in water supply: a review on state-of-the-art monitoring technologies and their applications. Sens Actuators B Chem. 2018;255:2657–2689. doi:10.1016/j.snb.2017.09.078.
  • Abegaz BW, Datta T, Mahajan SM. Sensor technologies for the energy-water nexus–a review. Appl Energy. 2018;210:451–466. doi:10.1016/j.apenergy.2017.01.033.
  • Li T, Wang X, Zhou Q, et al. Swift acid rain sensing by synergistic rhizospheric bioelectrochemical responses. ACS Sens. 2018;3(7):1424–1430. doi:10.1021/acssensors.8b00401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.