137
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Biochar from Delonix regia pod: consideration of an updraft retort carbonisation process

ORCID Icon, , , , , & show all
Pages 505-513 | Received 06 Jun 2023, Accepted 18 Sep 2023, Published online: 25 Sep 2023

References

  • Vargas AM, Garcia CA, Reis EM, et al. NaOH-activated carbon from flamboyant (Delonix regia) pods: optimization of preparation conditions using Central composite rotatable design. Chem Eng J. 2010;162(1):43–50. doi: 10.1016/j.cej.2010.04.052.
  • Hossain SZ, Sultana N, Razzak SA, et al. Modeling and multi-objective optimization of microalgae biomass production and CO2 biofixation using hybrid intelligence approaches. Renew Sustain Energy Rev. 2022;157:112016. doi: 10.1016/j.rser.2021.112016.
  • González-Arias J, Sánchez ME, Cara-Jiménez J, et al. Hydrothermal carbonization of biomass and waste: a review. Environ Chem Lett. 2022;20(1):211–221. doi: 10.1007/s10311-021-01311-x.
  • Shyam S, Arun J, Gopinath KP, et al. Biomass as source for hydrochar and biochar production to recover phosphates from wastewater: a review on challenges, commercialization, and future perspectives. Chemosphere. 2022;286(Pt 1):131490. doi: 10.1016/j.chemosphere.2021.131490.
  • Dos Santos RG, Alencar AC. Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by fischer Tropsch synthesis: a review. Int J Hydrogen Energy. 2020;45(36):18114–18132. doi: 10.1016/j.ijhydene.2019.07.133.
  • Latinwo GK, Alade AO, Agarry SE, et al. Optimization of process parameters for the production of activated carbon from Delonix regia pod through chemical activation and carbonization process. Appl J Environ Eng Sci. 2019;5(1):5–1.
  • Chandrakala M, Upadhyay A. Preparation of nontoxic activated charcoal from gulmohar (Delonix regia) shell. Int J Sci Environ Tech. 2018;7(2):689–695.
  • Ramesh K, Rajappa A, Nandhakumar V. Adsorption of methylene blue onto microwave assisted zinc chloride activated carbon prepared from Delonix regia pods-isotherm and thermodynamic studies. Res J Chem Sci. 2014;4(7):36–42.
  • Shabir G, Anwar F, Sultana B, et al. Antioxidant and antimicrobial attributes and phenolics of different solvent extracts from leaves, flowers and bark of gold mohar [Delonix regia (bojer ex hook.) raf.]. Molecules. 2011;16(9):7302–7319. doi: 10.3390/molecules16097302.
  • Abdel-Rahman L, Al-Farhan B, Abu-Dief A, et al. Removal of toxic Pb (II) ions from aqueous solution by nano sized flamboyant pod (Delonix regia). J Transition Met Complexes. 2018;1(1):1–10. doi: 10.32371/jtmc/236055.
  • Onwuka JC, Agbaji EB, Ajibola VO, et al. Kinetic studies of surface modification of lignocellulosic Delonix regia pods as sorbent for crude oil spill in water. J Appl Res Technol. 2016;14(6):415–424. doi: 10.1016/j.jart.2016.09.004.
  • Akinola L, Ibrahim A, Mohammed M. Adsorption of methylene blue on adsorbents derived from Delonix regia seed pods and Vigna subterranea fruit hulls: a kinetic study. Sci World J. 2019;14(1):23–27.
  • Babalola BM, Babalola AO, Adubiaro HO, et al. Application of waste Delonix regia pods and leaves for the sorption of Pb (II) ions from aqueous solution: kinetic and equilibrium studies. Water Quality Res J. 2019;54(4):278–289. doi: 10.2166/wqrj.2019.045.
  • Ajisha MAT, Rajagopal K. Fluoride removal study using pyrolyzed Delonix regia pod, an unconventional adsorbent. Int J Environ Sci Technol. 2015;12(1):223–236. doi: 10.1007/s13762-013-0485-8.
  • Modi A, Mishra V, Bhatt A, et al. Delonix regia: historic perspectives and modern phytochemical and pharmacological researches. Chin J Natural Med. 2016;14(1):31–39.
  • Subramani S, Kumaresan D, Thinakaran N. Application of activated carbon derived from waste Delonix regia seed pods for the adsorption of acid dyes: kinetic and equilibrium studies. Desalin Water Treat. 2016;57(16):7322–7333. doi: 10.1080/19443994.2015.1017741.
  • Liu T, Lawluvy Y, Shi Y, et al. Adsorption of cadmium and lead from aqueous solution using modified biochar: a review. J Environ Chem Eng. 2022;10(1):106502. doi: 10.1016/j.jece.2021.106502.
  • Li X, Wang C, Zhang J, et al. Preparation and application of magnetic biochar in water treatment: a critical review. Sci Total Environ. 2020;711:134847. doi: 10.1016/j.scitotenv.2019.134847.
  • Srivatsav P, Bhargav BS, Shanmugasundaram V, et al. Biochar as an eco-friendly and economical adsorbent for the removal of colorants (dyes) from aqueous environment: a review. Water. 2020;12(12):3561. doi: 10.3390/w12123561.
  • Panwar N, Pawar A, Salvi B. Comprehensive review on production and utilization of biochar. SN Appl Sci. 2019;1(2):168. doi: 10.1007/s42452-019-0172-6.
  • Jafri N, Wong W, Doshi V, et al. A review on production and characterization of biochars for application in direct carbon fuel cells. Process Safety Environ Protect. 2018;118:152–166. doi: 10.1016/j.psep.2018.06.036.
  • Sugumaran P, Susan VP, Ravichandran P, et al. Production and characterization of activated carbon from banana empty fruit bunch and Delonix regia fruit pod. J Sustain Energy Environ. 2012;3(3):125–132.
  • Aremu M, Alade A, Araromi D, et al. Optimization of process parameters for the carbonization of flamboyant pod bark (Delonix regia). ESJ. 2017;13(24):165–175. doi: 10.19044/esj.2017.v13n24p165.
  • Vargas AM, Martins AC, Almeida VC. Ternary adsorption of acid dyes onto activated carbon from flamboyant pods (Delonix regia): analysis by derivative spectrophotometry and response surface methodology. Chem Eng J. 2012;195–196:173–179. doi: 10.1016/j.cej.2012.04.090.
  • Ighalo JO, Adeniyi AG. Biomass to biochar conversion for agricultural and environmental applications in Nigeria: challenges, peculiarities and prospects. Mater Int. 2020;2(2):111–116.
  • Kanouo BMD, Allaire SE, Munson AD. Quality of biochars made from eucalyptus tree bark and corncob using a pilot-scale retort kiln. Waste Biomass Valor. 2018;9(6):899–909. doi: 10.1007/s12649-017-9884-2.
  • Sparrevik, M, Adam, C, Martinsen, V, Cornelissen, G, Emissions of gases and particles from charcoal/biochar production in rural areas using medium-sized traditional and improved “retort” kilns. Biomass Bioenergy. 2015;72:65–73. doi: 10.1016/j.biombioe.2014.11.016.
  • Adeniyi AG, Ighalo JO. Computer-Aided modeling of thermochemical conversion processes for environmental waste management. In: C.M. Hussain, editor. Handbook of environmental materials management. Switzerland: Springer Nature; 2020. p. 1–16.
  • Adeniyi AG, Ighalo JO, Onifade DV, et al. Modelling the valorisation of poultry litter via thermochemical processing. Biofuels Bioprod Bioref. 2020;14(2):242–248. doi: 10.1002/bbb.2056.
  • Pastor-Villegas J, Pastor-Valle JF, Rodríguez JMM, et al. Study of commercial wood charcoals for the preparation of carbon adsorbents. J Anal Appl Pyrolysis. 2006;76(1–2):103–108. doi: 10.1016/j.jaap.2005.08.002.
  • Nyazika T, Jimenez M, Samyn F, et al. Pyrolysis modeling, sensitivity analysis, and optimization techniques for combustible materials: a review. J Fire Sci. 2019;37(4–6):377–433. doi: 10.1177/0734904119852740.
  • Ighalo JO, Rangabhashiyam S, Dulta K, et al. Recent advances in hydrochar application for the adsorptive removal of wastewater pollutants. Chem Eng Res Des. 2022;184:419–456. doi: 10.1016/j.cherd.2022.06.028.
  • Ighalo JO, Eletta OAA, Adeniyi AG. Biomass carbonisation in retort kilns: process techniques, product quality and future perspectives. Bioresour Technol Rep. 2022;17:100934. doi: 10.1016/j.biteb.2021.100934.
  • Sukiran MA, Abnisa F, Daud WMAW, et al. A review of torrefaction of oil palm solid wastes for biofuel production. Energy Convers Manage. 2017;149:101–120. doi: 10.1016/j.enconman.2017.07.011.
  • Chandrasekaran A, Subbiah S, Bartocci P, et al. Carbonization using an improved natural draft retort reactor in India: comparison between the performance of two woody biomasses, Prosopis juliflora and Casuarina equisetifolia. Fuel. 2021;285:119095. doi: 10.1016/j.fuel.2020.119095.
  • Siemons RV, Baaijens L. An innovative carbonisation retort: technology and environmental impact. Sci Tech J Soc Therm Eng Serbia. 2012;38(2):131–138.
  • Adam J. Improved and more environmentally friendly charcoal production system using a low-cost retort–kiln (eco-charcoal). Renew Energy. 2009;34(8):1923–1925. doi: 10.1016/j.renene.2008.12.009.
  • Chandrasekaran A, Subbiah S, Ramachandran S, et al. Natural draft-improved carbonization retort system for biocarbon production from Prosopis juliflora biomass. Energy Fuels. 2019;33(11):11113–11124. doi: 10.1021/acs.energyfuels.9b02639.
  • Ighalo JO, Onifade DV, Adeniyi AG. Retort-heating carbonisation of almond (Terminalia catappa) leaves and LDPE waste for biochar production: evaluation of product quality. Int J Sustain Energy. 2021;14(5):1059–1067. doi: 10.1080/19397038.2021.1886371.
  • Padakan R, Department of Mechanical and Manufacturing Engineering at Kasetsart University Chalerrmphrakiat Sakonnakhon Province Campus, Thailand. Effect of the flue of charcoal retort kilns on production charcoal using drum kilns for households. IJET. 2019;11(4):245–248. doi: 10.7763/IJET.2019.V11.1155.
  • Yin C-Y. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel. 2011;90(3):1128–1132. doi: 10.1016/j.fuel.2010.11.031.
  • Ighalo JO, Adeniyi AG, Igwegbe CA. 3D reconstruction and morphological analysis of electrostimulated hyperthermophile biofilms of Thermotoga neapolitana. Biotechnol Lett. 2021;43(7):1303–1309. doi: 10.1007/s10529-021-03123-z.
  • Adelodun AA, Adeniyi AG, Ighalo JO, et al. Thermochemical conversion of oil palm fiber-LDPE hybrid waste into biochar. Biofuels Bioprod Bioref. 2020;14(6):1313–1323. doi: 10.1002/bbb.2130.
  • Adeniyi AG, Abdulkareem SA, Ighalo JO, et al. Thermochemical co-conversion of sugarcane Bagasse-LDPE hybrid waste into biochar. Arab J Sci Eng. 2021;46(7):6391–6397. doi: 10.1007/s13369-020-05119-9.
  • Abdelhafez AA, Abbas MHH, Hamed MH. Biochar: a solution for soil lead (Pb) pollution. The 8th Int. Conf. for Develop. and the Environment in the Arab world, 2016 Mar 22-24; Egypt: Assiut University Center for Environmental Studies.
  • Bounaas M, Bouguettoucha A, Chebli D, et al. Role of the wild carob as biosorbent and as precursor of a new high-surface-area activated carbon for the adsorption of methylene blue. Arab J Sci Eng. 2021;46(1):325–341. doi: 10.1007/s13369-020-04739-5.
  • Jawad AH, Abdulhameed AS. Statistical modeling of methylene blue dye adsorption by high surface area mesoporous activated carbon from bamboo chip using KOH-assisted thermal activation. Energ Ecol Environ. 2020;5(6):456–469. doi: 10.1007/s40974-020-00177-z.
  • Ighalo JO, Adeniyi AG, Adelodun AA. Recent advances on the adsorption of herbicides and pesticides from polluted waters: performance evaluation via physical attributes. J Ind Eng Chem. 2021;93:117–137. doi: 10.1016/j.jiec.2020.10.011.
  • Maruccia E, Lourenço MAO, Priamushko T, et al. Nanocast nitrogen-containing ordered mesoporous carbons from glucosamine for selective CO2 capture. Mater Today Sustain. 2022;17:100089. doi: 10.1016/j.mtsust.2021.100089.
  • Idris R, Chong WWF, Ali A, et al. Pyrolytic oil with aromatic-rich hydrocarbons via microwave-induced in-situ catalytic co-pyrolysis of empty fruit bunches with a waste truck tire. Energy Convers Manage. 2021;244:114502. doi: 10.1016/j.enconman.2021.114502.
  • Achehboune M, Khenfouch M, Boukhoubza I, et al. Microstructural, FTIR and Raman spectroscopic study of rare earth doped ZnO nanostructures. Mater Today: PProc. 2022;53:319–323. doi: 10.1016/j.matpr.2021.04.144.
  • Bakri MKB, Jayamani E. Comparative study of functional groups in natural fibers: Fourier transform infrared analysis (FTIR). Futuristic Trends Eng Sci Human Technol. FTESHT-16, 2016;167:167–174.
  • Liu Y, He Z, Uchimiya M. Comparison of biochar formation from various agricultural by-products using FTIR spectroscopy. MAS. 2015;9(4):246. doi: 10.5539/mas.v9n4p246.
  • Břendová K, Száková J, Lhotka M, et al. Biochar physicochemical parameters as a result of feedstock material and pyrolysis temperature: predictable for the fate of biochar in soil? Environ Geochem Health. 2017;39(6):1381–1395. doi: 10.1007/s10653-017-0004-9.
  • Ronsse F, Van Hecke S, Dickinson D, et al. Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy. 2013;5(2):104–115. doi: 10.1111/gcbb.12018.
  • Lu GQ, Low JCF, Liu CY, et al. Surface area development of sewage sludge during pyrolysis. Fuel. 1995;74(3):344–348. doi: 10.1016/0016-2361(95)93465-P.
  • Adeniyi AG, Ighalo JO, Onifade DV, et al. Production of hybrid biochar by Retort-Heating of elephant grass (Pennisetum purpureum) and low density polyethylene (LDPE) for waste management and product development. J Mater Environ Sci. 2020;11(12):1940–1952.
  • Abdelhafez AA, Li J, Abbas MH. Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil. Chemosphere. 2014;117:66–71. doi: 10.1016/j.chemosphere.2014.05.086.
  • Adeniyi AG, Ighalo JO, Onifade DV. Production of biochar from elephant grass (Pernisetum purpureum) using an updraft biomass gasifier with retort heating. Biofuels. 2021;12(10):1283–1290. doi: 10.1080/17597269.2019.1613751.
  • Adeniyi AG, Ighalo JO, Onifade DV. Production of bio-char from plantain (Musa paradisiaca) fibers using an updraft biomass gasifier with retort heating. Combust Sci Technol. 2021;193(1):60–74. doi: 10.1080/00102202.2019.1650269.
  • Adeniyi AG, Ighalo JO, Onifade DV. Biochar from the thermochemical conversion of orange (Citrus sinensis) peel and albedo: product quality and potential applications. Chem Africa. 2020;3(2):439–448. doi: 10.1007/s42250-020-00119-6.
  • Adeniyi AG, Ighalo JO, Adeyanju CA. Materials-to-product potentials for sustainable development in Nigeria. Int J Sustainable Eng. 2021;14(4):664–671. doi: 10.1080/19397038.2021.1896591.
  • Ronsse F, Nachenius RW, Prins W. Carbonization of biomass, in recent advances in thermo-chemical conversion of biomass. Amsterdam, The Netherlands: Elsevier; 2015. p. 293–324.
  • Miliotti E, Chiaramonti D. Large scale biochar production and activation, in biochar: emerging applications. Bristol, United Kingdom: IOP Publishing; 2020.
  • Iwuozor KO, Ighalo JO, Ogunfowora LA, et al. An empirical literature analysis of adsorbent performance for methylene blue uptake from aqueous media. J Environ Chem Eng. 2021;9(4):105658. doi: 10.1016/j.jece.2021.105658.
  • Ighalo JO, Adeniyi AG, Eletta OAA, et al. Competitive adsorption of Pb(II), Cu(II), Fe(II) and Zn(II) from aqueous media using biochar from oil palm (elaeis guineensis) fibers: a kinetic and equilibrium study. Indian Chem Eng. 2021;63(5):501–511. doi: 10.1080/00194506.2020.1787870.
  • Ighalo JO, Arowoyele LT, Ogunniyi S, et al. Utilisation of biomass and hybrid biochar from elephant grass and low density polyethylene for the competitive adsorption of Pb(II), Cu(II), Fe(II) and Zn(II) from aqueous media. Recent Innov Chem Eng. 2020;14(2):148–159.
  • Adeniyi AG, Abdulkareem SA, Ighalo JO, et al. Usage of biomass-based carbon materials as lubricant additive: effects on rheological and tribological properties. Lett Appl NanoBioSci. 2021;10(4):2861–2868.
  • Shabbir A, Shabbir M, Javed AR, et al. Exploratory data analysis, classification, comparative analysis, case severity detection, and internet of things in COVID-19 telemonitoring for smart hospitals. J Exp Theor Artificial Intel. 2022;35(4):507–534.
  • Iwendi C, Mahboob K, Khalid Z, et al. Classification of COVID-19 individuals using adaptive neuro-fuzzy inference system. Multimed Syst. 2022;28(4):1223–1237.
  • Iwendi C, Srivastava G, Khan S, et al. Cyberbullying detection solutions based on deep learning architectures. Multimedia Systems. 2020;29:1839–1852.
  • Mittal M, Saraswat LK, Iwendi C, et al. A neuro-fuzzy approach for intrusion detection in energy efficient sensor routing. 2019 4th International conference on internet of things: Smart innovation and usages (IoT-SIU). IEEE; 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.