95
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A critical review on sustainable biohydrogen production

, , , , , & show all
Pages 883-902 | Received 18 May 2023, Accepted 07 Dec 2023, Published online: 21 Dec 2023

References

  • Singh J, Mudliar S, Prabhudesai M. A review on the integration of microbial energy cells (MFCs) and microbial electrolysis cells (MECs) for biohydrogen production. Renew Sustain Energy Rev. 2023;160:112364. doi: 10.1016/B978-0-444-64052-9.00035-2.
  • Sun H, Yin Y, Fang F, et al. Recent advances in microbial electrolysis cells (MECs) for biohydrogen products. Int J Hydrogen Energy. 2023;48(26):13112–13126. doi: 10.1016/j.ijhydene.2023.131126.
  • Li J, Cheng S, Liu H. Bioelectrochemical systems for efficient hydrogen production. Renew Sustain Energy Rev. 2017;78:450–460. doi: 10.1016/j.rser.2017.04.061.
  • Zhang Y, Wang J, Sun H. The eventuality of microbial energy cells (MFCs) and microbial electrolysis cells (MECs) for biohydrogen product from wastewater. Renew Sustain Energy Rev. 2023;160:112356. doi: 10.1016/j.rser.2022.112356.
  • Ghimire A, Frunzo L, Pirozzi F, et al. Electricity generation and microbial community analysis of thermophilic microbial electrolysis cell. Bioresour Technol. 2015;181:280–287.
  • Rago L, Cristiani P, Villa R, et al. Microbial electrochemical technologies for sustainable bioprocesses: prospects and challenges of microbial electrolysis cells and microbial fuel cells. In: Current developments in biotechnology and bioengineering. Elsevier; 2020. p. 85–116. doi: 10.1016/B978-0-444-64241-1.00003-8.
  • Chen G, Sun Y, Lu X. Microbial electrochemical systems for simultaneous hydrogen production and wastewater treatment: a review of principles, configurations, and applications. Renew Sustain Energy Rev. 2020;117:109515. doi: 10.1016/j.rser.2019.109515.
  • Zhou M, Yan Q, Liu W. Advances in microbial electrolysis cells for hydrogen production from wastewater: a review. J Chem Eng. 2019;370:61–81. doi: 10.1016/j.cej.2019.03.242.
  • Yu L, Yuan H, He Z. Microbial electrolysis cells for hydrogen production: advances, challenges, and prospects. Bioresour Technol. 2021;325:124721. doi: 10.1016/j.biortech.2021.124721.
  • Kumar G, Mudliar S, Prabhudesai M. Biohydrogen product in microbial electrolysis cells exercising organic residue feedstock: a review. Renew Sustain Energy Rev. 2022;160:112319. doi: 10.1016/j.rser.2022.112319.
  • Kumari S, et al. Microbial communities in microbial electrolysis cells and microbial fuel cells for biohydrogen production. In: Bioelectrochemical systems. Singapore: Springer; 2021. p. 57–86.
  • Kumar G, Mudliar S, Prabhudesai M. Mathematical model of biohydrogen product in microbial electrolysis cell: a review. Energy Convers Manage. 2023;272:115832. doi: 10.1016/j.ijhydene.2023.09.021.
  • Kumari S, Mudliar S, Prabhudesai M. New perceptivity into microbial electrolysis cells (MEC) and microbial energy cells (MFC) for contemporaneous wastewater treatment and green energy (hydrogen) generation: a review. J Environ Chem Eng. 2022;10:107831. doi: 10.1016/j.jece.2022.107831.
  • Liu T, Li Y, Liu J, et al. Microbial community structure and functional diversity in microbial electrolysis cells for hydrogen production. Bioresour Technol. 2021;327:124786.
  • Shrestha PM, Khanal SK. Microbial electrolysis cells for production of hydrogen and value-added products: a review. Bioresour Technol. 2017;245:1228–1244.
  • Mohanakrishna G, Venkata Mohan S, Sarma PN. Microbial fuel cells and microbial electrolysis cells for sustainable biohydrogen production. Renew Sustain Energy Rev. 2019;114:109312. doi: 10.1016/j.rser.2019.109312.
  • Wang X, Feng Y, Ren N, et al. Effects of substrate and buffer concentrations on bio-hydrogen production in microbial electrolysis cells. Energy Environ Sci. 2011;4(8):3400–3406.
  • Yadav AK, Das D, Nath K. Microbial electrolysis cell for biohydrogen production: factors affecting hydrogen production and its bioseparation. In: Biohydrogen. Singapore: Springer; 2018. p. 47–70. doi: 10.1007/978-981-10-8276-3_3.
  • Hao L, Zhang Y, Rabaey K, et al. Effects of temperature on biohydrogen production and microbial communities in two-stage thermophilic anaerobic digestion of sewage sludge. Bioresour Technol. 2015;190:38–45.
  • Fan Y, Hu H, Li X, et al. Improvement of hydrogen production in microbial electrolysis cells by enhancing energy status of syntrophic bacteria with conductive materials. Bioresour Technol. 2018;251:329–335.
  • Bajracharya S, Sharma M, Mohanakrishna G, et al. Electrode materials for microbial electrocatalysis–a review. RSC Adv. 2016;6(64):59240–59269.
  • Kim JR, Logan BE. Microbial electrolysis cells for energy production from wastewater: a review. Water Res. 2011;45(15):2015–2024. doi: 10.1016/j.watres.2011.01.032.
  • Guo K, Xu X, Zhang X, et al. Microbial community and metabolic pathway succession is driven by changed substrate types in microbial electrolysis cells for H2 production. Int J Hydrog Energy. 2019;44(9):4525–4536. doi: 10.1016/j.ijhydene.2018.12.158.
  • Saratale GD, Saratale RG, Oh SE, et al. Microbial electrochemical technologies for sustainable biohydrogen production: a review. Bioresour Technol. 2017;245:1295–1305.
  • Li H, Yang C, Zhang J, et al. Analysis of microbial community during biohydrogen production in microbial electrolysis cell. Bioresour Technol. 2015;182:360–366. doi: 10.1016/j.biortech.2015.01.034.
  • Zhou S, Jin X, Li Y, et al. Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells. Front Energy Res. 2015;3:30. doi: 10.3389/fenrg.2015.00030.
  • Li H, Tian Y, Li B. Advances in microbial fuel cells and microbial electrolysis cells for wastewater treatment. Bioresour Technol. 2019;291:121853. doi: 10.1016/j.biortech.2019.121853.
  • Logan BE, Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science. 2012;337(6095):686–690. doi: 10.1126/science.1217412.
  • Zhang F, Cheng S, Pant D, et al. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem Commun. 2009;11(11):2177–2179. 9. doi: 10.1016/j.elecom.2009.09.008.
  • Lay JJ, Lee YJ. Hydrogen production by clostridium strains. Biotechnol Adv. 2008;26(3):218–227. doi: 10.1016/j.biotechadv.2007.12.001.
  • Lin CY, Wu JY, Chang JS. A feasible approach to enhancing bio-hydrogen production from food wastes using mixed microflora. J Environ Manage. 2009;90(2):1011–1015. doi: 10.1016/j.jenvman.2008.06.018.
  • Lin CY, Lay CH, Wu CS, et al. Recent advances in biohydrogen production by anaerobic fermentation: from optimization to microbial pathway analysis. Bioresour Technol. 2011;102(18):8327–8337. doi: 10.1016/j.biortech.2011.06.028.
  • Jain A, Balasubramanian R. Biohydrogen production from organic waste: recent advances, challenges and perspectives. Bioresour Technol. 2020;310:123435. doi: 10.1016/j.biortech.2020.123435.
  • Heidrich ES, Dolfing J, Scott K. Bacteria that grow on electricity. In: Bioelectrosynthesis. Cham: Springer; 2018. p. 1–29. doi: 10.1007/978-3-319-68634-8_1.
  • Gao Y, Zhuang L, Zhao HP, et al. Anode-respiring bacteria (ARB) in microbial electrochemical systems (MESs): a review. Bioresour Technol. 2020;310:123468. doi: 10.1016/j.biortech.2020.123468.
  • Logan BE, Wallack MJ, Kim KY, et al. Assessment of microbial fuel cell configurations and power densities. Environ Sci Technol Lett. 2015;2(8):206–214. doi: 10.1021/acs.estlett.5b00254.
  • Jiang Y, Su M, Li K, et al. Performance enhancement and microbial community analysis of a microbial electrolysis cell for hydrogen production using cathode-respiring bacteria. Front Microbiol. 2020;11:1705.
  • Li H, Tian Y, Li Y. Cathodic biofilm development and evolution in bioelectrochemical systems. Front Microbiol. 2020;11:347.
  • Cheng S, Xing D, Logan BE. Microbial electrolysis cells: a novel technology for hydrogen production. Chem Soc Rev. 2009;38(6):1926–1939.
  • Liu H, Grot S, Logan BE. Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol. 2005;39(11):4317–4320. doi: 10.1021/es050244p.
  • Lovley DR. Syntrophy goes electric: direct interspecies electron transfer. Annu Rev Microbiol. 2017;71(1):643–664. doi: 10.1146/annurev-micro-030117-020031.
  • Zhang Y, Zhang H, Quan X, et al. Effect of electrode spacing on performance of two-chamber microbial electrolysis cell for hydrogen production from wastewater. Int J Hydrog Energy. 2018;43(27):12291–12297.
  • Ge X, Huang Q, Feng C. Performance of tubular microbial electrolysis cell (MEC) with different electrode configurations for synthetic wastewater treatment. Bioresour Technol. 2019;275:92–99.
  • Zhang Y, Angelidaki I, Zhang S. Performance and microbial community analysis of a microbial electrolysis cell for hydrogen production with different cathode materials. Int J Hydrog Energy. 2019;44(56):30411–30419.
  • Daghio M, Aulenta F. Bioelectrochemical systems for wastewater treatment: from energy generation to effluent polishing. Front Microbiol. 2018;9:2991.
  • Santoro C, Guilizzoni M, Cristiani P. Advances in microbial electrolysis cells for wastewater treatment and energy production: a review. J Chem Eng. 2018;338:640–656.
  • Liu H, Cheng S, Logan BE. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol. 2005;39(2):658–662. doi: 10.1021/es048927c.
  • Katuri KP, Werner CM, Saito T, et al. A miniature stacked microbial fuel cell constructed using 3D printing and laser cutting. J Power Sources. 2016;312:180–186.
  • Zhu X, Yates MD, El-Naggar MY, et al. Membraneless microbial electrolysis cells using selectively permeable membranes for substrate transport. Phys Chem Chem Phys. 2014;16(27):14022–14029.
  • Rao S, Song H, Liu Y, et al. Advances in design and configuration of microbial electrolysis cells for bioenergy production and resource recovery. Bioresour Technol. 2020;300:122730.
  • Liu G, Wang X, Qu Y, et al. Membraneless microbial electrolysis cell for efficient hydrogen production from wastewater. Water Res. 2016;91:364–371.
  • Logan BE. Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol. 2010;85(6):1665–1671. doi: 10.1007/s00253-009-2378-9.
  • Heidrich ES, Edwards SR, Dolfing J, et al. Performance of a pilot-scale continuous flow microbial electrolysis cell fed on domestic wastewater at ambient temperatures for a 12-month period. Bioresour Technol. 2014;173:87–95. doi: 10.1016/j.biortech.2014.09.083.
  • Choi S, Kim J, Kim S. Performance of a membraneless microbial electrolysis cell for the treatment of domestic wastewater: effect of the COD concentration. Bioresour Technol. 2015;196:234–240.
  • Liu H, Logan BE. Membraneless microbial electrolysis cell for sulfate removal and electricity generation. Environ Sci Technol Lett. 2021;8(2):131–136.
  • Freguia S, Rabaey K. Microbial electrochemistry and energy recovery from wastewater. Nat Rev Chem. 2018;2(12):1–15. doi: 10.1038/s41570-018-0066-y.
  • Li W, Liang P, Zhang X, et al. A novel miniature microbial electrolysis cell with microscale dimensions (micro-MEC) and a microscale gap electrode. 2014.
  • Chen S, Rotaru AE, Shrestha PM, et al. Promoting direct interspecies electron transfer with activated carbon. Energy Environ Sci. 2014;7(5):1926–1930. doi: 10.1039/C4EE01335K.
  • Bhubaneswari P, Thangavelu P, Muthukumar K, et al. Spouted bed membraneless microbial fuel cell for bioelectricity production from synthetic wastewater. Bioresour Technol Rep. 2019;6:37–44. doi: 10.1016/j.biteb.2019.02.003.
  • Kumar R, Ray S. Spouted bed microbial fuel cell: a review on its performance and applications. Bioresour Technol Rep. 2019;6:43–50. doi: 10.1016/j.biteb.2019.05.0.
  • Zahraa A, Kadhim Ali H, Abbar, et al. A novel bio-electrochemical cell with rotating cylinder cathode for cadmium removal from simulated wastewater. Egypt J Chem. 2022;65:769–778.
  • Mohanakrishna G, Mohan SV, Sarma PN, et al. Microbial electrolysis cells: an overview on the progress, challenges and future directions. IOP Conf Series: Environ Earth Sci. 2016;49(1):012003. doi: 10.1088/1755-1315/49/1/012003.
  • Feng Y, Wang X, Logan BE, et al. Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol. 2015;99(10):4691–4698. doi: 10.1007/s00253-015-6518-2.
  • Jafary T, Lee SH, Kim JR, et al. Microbial electrolysis cells: a review of factors affecting performance. J Ind Eng Chem. 2018;60:425–443. doi: 10.1016/j.jiec.2017.12.052.
  • Zhao N, Angelidaki I, Zhang Y. Continuous electricity generation and wastewater treatment in a flow-through microbial electrolysis cell: the effect of hydraulic retention time and organic loading rate. Bioresour Technol. 2019;281:42–49. doi: 10.1016/j.biortech.2019.01.082.
  • Rozendal RA, Hamelers HVM, Rabaey K, et al. Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol. 2008;26(8):450–459. doi: 10.1016/j.tibtech.2008.04.008.
  • Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol. 2004;38(7):2281–2285. doi: 10.1021/es034923g.
  • Min B, Logan BE. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol. 2012;46(5):3140–3146.
  • Zhang Y, Angelidaki I, Zhang H. Integrated production of hydrogen and methane in a microbial electrolysis cell with a packed-bed cathode. Bioresour Technol. 2015;192:749–754. doi: 10.1016/j.biortech.2015.05.059.
  • Rozendal RA, Jeremiasse AW, Hamelers HV, et al. Hydrogen production with a microbial electrolysis cell. Chem Eng Sci. 2008;63(15):4215–4220. doi: 10.1016/j.ces.2008.04.047.
  • Kim JR, Jung SH, Regan JM. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour Technol. 2014;164:19–26. doi: 10.1016/j.biortech.2014.04.093.
  • Logan BE, Rossi R, Ragab A, et al. Microbial electrolysis cells. In: Bioelectrochemical systems; Cham: Springer; 2019. p. 63–108. doi: 10.1007/978-3-030-14070-9_3.
  • Xu Y, Huang J, Zhou M, et al. Performance and microbial community analysis of a cross-flow microbial electrolysis cell for hydrogen production from cassava stillage. Bioresour Technol. 2018;251:84–90. doi: 10.1016/j.biortech.2017.12.011.
  • Nam JY, Kim HJ, Choi YK, et al. Stacked microbial fuel cells for wastewater treatment and electricity generation. Appl Biochem Biotechnol. 2015;175(5):2655–2666. doi: 10.1007/s12010-014-1409-.
  • Guo K, Han H, Li M, et al. Influence of cathode configuration on performance of multi-chamber stacked microbial electrolysis cells. Bioresour Technol. 2017;224:485–492. doi: 10.1016/j.biortech.2016.11.055.
  • Gajda I, Greenman J, Melhuish C, et al. Multi-chamber microbial fuel and electrolysis cells: opportunities and challenges. Bioresour Technol. 2019;292:121950. doi: 10.1016/j.biortech.2019.121950.
  • Min B, Logan BE. Continuous electricity generation from domestic wastewater and organic substrates in a flat panel microbial fuel cell. Environ Sci Technol. 2012;46(11):5740–5745. doi: 10.1021/es300171b.
  • Sharma A, Vanbroekhoven K. Performance and sustainability of microbial electrochemical technologies: a review. J Clean Prod. 2020;242:118412.
  • Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol. 2009;7(5):375–381. doi: 10.1038/nrmicro2113.
  • Zhang Y, Angelidaki I, Karakashev D. Microbial electrochemical systems for simultaneous hydrogen production and organic matter removal: recent advances and future perspectives. Renew Energ. 2021;171:958–970. doi: 10.1016/j.renene.2021.03.012.
  • Zhang Y, Angelidaki I, Karakashev D. Advances and perspectives in microbial electrolysis cells and microbial electrochemical reactors for wastewater treatment. Trends Biotechnol. 2019;37(10):1031–1045. doi: 10.1016/j.tibtech.2019.03.006.
  • Nevin KP, Woodard TL, Franks AE, et al. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio. 2010;1(2):e00103-10. doi: 10.1128/mBio.00103-10.
  • Goud RK, Mohan SV, Sarma PN. Biohydrogen production from chemical wastewater treatment in an upflow anaerobic biofilm reactor (UABR) with immobilized mixed culture: influence of substrate loading rates. Int J Hydrog Energ. 2008;33(16):4282–4294.
  • Xu H, Liu X, Guo J, et al. H7: a potential hydrogen producer from organic wastewater in microbial electrolysis cells. Int J Hydrog Energy. 2018;43(41):18818–18827.
  • Katuri KP, Pecher K, Pant D. Mixed culture polyhydroxyalkanoate (PHA) production from lignocellulose: effect of lignin content and identification of lignin degrading bacteria. Bioresour Technol. 2019;276:207–215.
  • Yu L, Li Y, Sun M, et al. Hydrogen production from a new photosynthetic bacterium, chlorobiumtepidum, in microbial electrolysis cells. Int J Hydrog Energy. 2014;39(4):1604–1609.
  • Ghosh S, Bagchi A. Biohydrogen production from synthetic wastewater using Citrobacter freundii in microbial electrolysis cell. Biotechnol Rep. 2020;25:e00422.
  • Shin HS, Youn HJ, Kim HJ. Clostridium acetobutylicum ATCC 824-mediated electrohydrogenesis in microbial electrolysis cell. Int J Hydrog Energy. 2016;41(28):11939–11944.
  • Kumar A, Kumar S. Hydrogen production by Clostridium butyricum: a review on process optimization. Int J Hydrog Energy. 2017;42(19):13067–13080.
  • Pinto RP, Rabaça I. Desulfovibriodesulfuricans: a potential hydrogen producer in microbial electrolysis cells fed with sulfate-rich wastewaters. Int J Hydrog Energy. 2018;43(13):6614–6621.
  • Zhang T, Bain TS, Barlett MA. Bioelectrochemical recovery of Cu, Pb, and Zn from wastewater with removal of sulfate at high rates. Environ Sci Technol. 2010;44(14):5316–5321.
  • Cao X, Huang Q, Zhang J. Simultaneous hydrogen production and organic matter removal using Enterobacter aerogenes in a microbial electrolysis cell. Bioresour Technol. 2019;287:121441.
  • Lin CY, Wu JY. Hydrogen production by Enterobacter cloacae. Energy Procedia. 2014;61:2222–2226.
  • Maeda T, Wood TK. Revisiting global regulation and metabolic network of Escherichia coli during anaerobic fermentative growth using integrative omics analysis. OMICS: J Integr Biol. 2009;13(3):209–225.
  • Wang X, Feng Y, Ren N, et al. Bioelectrochemical systems for simultaneous removal of organic pollutants and recovery of bioenergy. Bioresour Technol. 2016;215:254–263.
  • Reguera G, McCarthy KD, Mehta T, et al. Extracellular electron transfer via microbial nanowires. Nature. 2005;435(7045):1098–1101. doi: 10.1038/nature03661.
  • Liu X, Cheng K, Xing X. Hydrogen production from biomass waste by Klebsiella pneumoniae in microbial electrolysis cells. Int J Hydrog Energy. 2017;42(14):9426–9434.
  • Saratale RG, Saratale GD, Chang JS, et al. Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng. 2011;42(1):138–157. doi: 10.1016/j.jtice.2010.06.006.
  • Liu W, Cai W, Guo H, et al. Electricity production from xylose by microbial fuel cells using xylose-fermenting lactobacillus sp. Bioresour Technol. 2011;102(20):9547–9550.
  • Deutzmann JS, Sahin M. Spatiotemporal organization of microbial bioenergy systems. Curr Opin Biotechnol. 2018;50:85–91.
  • Aulenta F, Catervi A, Majone M. The role of anaerobic digestion and wastewater treatment in a biobased economy. Bioresour Technol. 2010;101(10):3551–3561.
  • Ahn Y, Logan BE, Kim KY. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol. 2010;44(22):8782–8787.
  • Kim BH, Kim HJ, Hyun MS, et al. Direct electrode reaction of Fe(III) reducing bacterium, shewanellaputrefaciens. J Microbiol Biotechnol. 1999;9(1):127–131.
  • Kim BH, Rittmann BE. Electricity and hydrogen production from photosynthetic bacteria in microbial fuel cells. Curr Opin Biotechnol. 2006;17(3):327–332.
  • Frielingsdorf S, Shuler ML, Oosse J. Light-driven hydrogen production by Rhodopseudomonas palustris DX-1. Bioresour Technol. 2011;102(16):7534–7538.
  • Kucek LA, Xu J, Nguyen M, et al. Investigation of Ruminococcus albus hydrogenase genes for hydrogen production in microbial electrolysis cells. Int J Hydrog Energy. 2016;41(44):20194–20202.
  • Marsili E, Baron DB, Shikhare ID, et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA. 2008;105(10):3968–3973. doi: 10.1073/pnas.0710525105.
  • Hartmann H, Ahring BK, Rintala J. Anaerobic digestion of the biowaste fraction of municipal solid waste: effect of recirculation of leachate on performance and microbial community composition. Water Res. 2005;39(17):3299–3307.
  • Jeon BH, Kim JR, Kim CW. Electricity generation and microbial community analysis of thermophilic microbial fuel cell using molasses wastewater. Biotechnol Bioprocess Eng. 2009;14(2):232–238.
  • Chae KJ, Choi MJ, Lee JW, et al. An overview of microbial electrolysis cells: a promising technology for wastewater treatment and bioenergy production. Water Sci Technol. 2009;60(11):2661–2670.
  • Liu G, Zhang R, Zhang H, et al. Microbial fuel cell-based bioremediation: from electricity generation to environmental restoration. Chemosphere. 2019;237:124412.
  • Kim Y, Lee J, Lee T, et al. A bioelectrochemical biosensor for rapid detection of Escherichia coli K12 based on proton transfer reaction mass spectrometry (PTR-MS). Sci Rep. 2015;5:17939. doi: 10.1038/srep17939.
  • Jia Y, Zhang L, Feng C. A microbial fuel cell-based biosensor with a platinum/carbon nanotubes composite cathode for cadmium (II) detection. J Environ Sci. 2019;76:373–381.
  • Chen S, Sun K, Yan J, et al. Recent advances in carbon capture technologies based on microbial electrochemical systems. J Clean Prod. 2021;311:127551. doi: 10.1016/j.jclepro.2021.127551.
  • Jiang Z, Liu Y, Wu X, et al. Selective bioelectrochemical synthesis of 2,3-butanediol from xylose by a high-performance microbial catalyst. Green Chem. 2019;21(1):95–104. doi: 10.1039/C8GC03494D.
  • Park DH, Zeikus JG. Electricity generation in microbial fuel cell using microorganisms immobilized on three-dimensional porous carbon anode. Biotechnol Bioeng. 2008;100(5):846–853. doi: 10.1002/bit.21868.
  • Logan BE, Hamelers B, Rozendal R, et al. Microbial fuel cells: methodology and technology. Environ Sci Technol. 2006;40(17):5181–5192. doi: 10.1021/es0605016.
  • Feng Y, Liang P, Li X, et al. Wastewater treatment and bioelectricity generation in microbial fuel cell: a review. Renew Sustain Energy Rev. 2020;119:109595. doi: 10.1016/j.rser.2019.109595.
  • Wang J, Zheng X, Liu T, et al. Bioelectrosynthesis of butyric acid from carbon dioxide by a cobalt-phthalocyanine-modified biocathode. Bioresour Technol. 2021;328:124907. doi: 10.1016/j.biortech.2021.124907.
  • Zhang Y, Cheng S, Zhang Y, et al. Electro-Fenton process integrated with Fe-Ni alloy anode microbial fuel cell for enhanced wastewater treatment. J Chem Eng. 2018;334:57–63. doi: 10.1016/j.cej.2017.10.108.
  • Dong X, Gao L, Zhang Y, et al. Strategies for improving the performance of microbial fuel cells and microbial electrolysis cells. Bioresour Technol. 2018;258:354–363. doi: 10.1016/j.biortech.2018.03.005.
  • Wang L, Liu Y, Wu S, et al. Microbial electrosynthesis from CO2 with a mixed culture dominated by homoacetogens and hydrogenotrophic methanogens. Bioresour Technol. 2019;281:79–87. doi: 10.1016/j.biortech.2019.01.010.
  • Zhang Y, Angelidaki I, Zhang S. Production of biohydrogen in microbial electrolysis cells (MECs) from wastewater: a critical review. Water Res. 2017;123:176–191. doi: 10.1016/j.watres.2017.06.022.
  • Zhang T, Gannon SM, Nevin KP, et al. A novel energy-efficient wastewater treatment process: microbial fuel cell enhanced anaerobic digestion (MFC-AD). Environ Sci Technol Lett. 2016;3(2):95–102. doi: 10.1021/acs.estlett.5b00450.
  • Liu Y, Li M, Zhang R, et al. Progress and prospects of microbial electrochemical systems for bioenergy production. Front Energ Res. 2019;7:1–20.
  • Logan BE, Regan JM. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 2006;14(12):512–518. doi: 10.1016/j.tim.2006.10.005.
  • Rabaey K, Rozendal RA. Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol. 2010;8(10):706–716. doi: 10.1038/nrmicro2422.
  • Lovley DR. Electromicrobiology. Annu Rev Microbiol. 2012;66(1):391–409. doi: 10.1146/annurev-micro-092611-150104.
  • Rozendal RA, Jeremiasse AW, Hamelers HV, et al. Hydrogen production with a microbial biocathode. Environ Sci Technol. 2008;42(2):629–634. doi: 10.1021/es0718926.
  • Li Y, Liu J, Cheng K, et al. Recent advances in microbial electrochemical systems for sustainable energy production and environmental remediation. Renew Sustain Energy Rev. 2021;135:110246. doi: 10.1016/j.rser.2020.110246.
  • Fan Y, Yang W, Ye D, et al. Advances in electron transfer mechanisms of bioelectrochemical systems. Chemosphere. 2020;245:125657. doi: 10.1016/j.chemosphere.2019.125657.
  • Kumar G, Mudliar S, Prabhudesai M. Microbial electrolysis cell (MEC) reactor configurations, recent advances and strategies in biohydrogen product. Energy Convers Manage Researchgate. 2023;272:115832. doi: 10.1016/j.fuel.2022.125269.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.